

2.5D and 3D Glass Panel Embedding For High Performance Computing

Student: Siddharth Ravichandran Faculty: Prof. Rao Tummala, Prof. Madhavan Swaminathan

Liaisons: Nobuo Ogura (Nagase) TSMC, AGC, AMAT, Schott, Corning, Disco, Honeywell, Brewer Science, Panasonic, Nitto

Industry Advisory Board (IAB) November 2019

Goals & Objectives

Outline

- □ Strategic Need
- **Research Highlights**
- Results

Georgia

Tech

□ Summary

Georgia Tech Goals and Objectives

- Georgia Tech
- Design and demonstration of next generation 3D Glass Panel Embedding with performance beyond 2.5D architectures, superior I/O density and form-factor, enhanced thermal management considering thermomechanical reliability, and lowcost fabrication.

	Parameter	Target	Prior Art	Challenges	Research Tasks			
Design	Bandwidth	1 TB/s	250-500 GB/s	High-Parasitic Package Architecture				
	Power Efficiency	1pJ/bit	10-15 pJ/bit	Contradicting channel Power and Latency requirements	1. Modeling and Design of 2.5D and 3D GPE			
Substrate	I/O Pitch	<20 um	~50 um	Huge die-shifts from EMC shrinkage in inorganic WFO	2. Fabrication of 2.5D & 3D GPE			
	Interconnect Length	<50 um	Mean Channel Length: ~500 um	 Poor Through-Mold-via pitch Increased channel length from MCM approach 	a) Embedding with and without carrier			
Thermal	T _c	Near-zero	0.03-0.1°Ccm ² W ⁻¹	 Direct chip copper integration Stress buffering between chip and copper with near-zero 	b) RDL c) Assembly			
	Bulk thermal conductivity	400-460 W/mK	5-399W/mK	thermal resistance • Large-area plating • Package-level reliability	3. Thermal Management			
	Tj	< 85°C		r ackage-level reliability	4. Reliability			
Assembly	Chip-Level (HBM)	~35 um	~55 um	 Panel Warpage Contradicting chip- and board- 				
	Board-level	<650 um	800-1000 um	level CTE requirements				

Georgia Tech **Strategic Need** I/O Pitch (um) 25 50 150 75 500 0.1 GT 3D GPE 1 Si Interposer System Heat Flux (W/cm²) A Memory Energy / bit (pJ/bit) Package-on-10 PCB Package (PoP) 100 HBM: GDDR3 0000000000000 20 LPDDR3 Multi-Chip Module (MCM) 30 DDR3 SerDes 40 PCB (System on board) 50 DDR 10 50 250 500 1000 System Bandwidth (GB/s) Industry Advisory Board (IAB) Georgia Institute of Technology November 2019

Georgia Tech

4

PRC Confidential

Georgia Tech Research Highlights

Georgia Tech Recent Progress – Pitch Scaling in GPE

Challenges and Benefits of Pitch Scaling in GPE towards < 20 μm IO Pitch with 2 μm L/S Integration

Industry Advisory Board (IAB) November 2019

PRC Confidential Impact of Via Size and Die-Shift on Capacitance

Industry Advisory Board (IAB) November 2019

Georgia Tech

Georgia Tech High-density GPE TV Details

Die Size	5 x 5 x 0.3 mm			
Cavity size	10.4 x 10.4 mm			
Cav <mark>ity Depth</mark>	310 μm			
Substr <mark>ate</mark> thickness	360 μ m			
Panel	<mark>100 x 10</mark> 0 mm			

I/O Pi <mark>tch</mark>	20, 15, 10, 7.5
Die to Die space	100, 50, 20
L/S	5, 4, 3 , 2, 1
Chip-pkg via	7.5, 5 , 3
Dielectric	5 μm

Industry Advisory Board (IAB) November 2019

Georgia **High-density GPE TV Fabrication** Tech

MLA15

IEIDELBER

Georgia Tech

Industry Advisory Board (IAB) November 2019

TV Fabrication- 1. Chip-to-PKG Microvia

Microvia formation on Maskless Aligner

Industry Advisory Board (IAB) November 2019

Georgia Tech

TV Fabrication- 2. RDL Channel

PRC Confidential

Industry Advisory Board (IAB) November 2019

Georgia Tech

- Impact of via dimensions and pad scaling (die shift) on power efficiency (PE) is studied and it can be concluded that:
 - Misalignment from die-shift results in up to 25% variation in capacitance
 - Scaling pad diameter has more significant impact on PE than scaling via dimensions.
- Demo of pitch-scaling and multi-die integration on GPE:
 - Embedding Process: < 2 μm die-shift has been demonstrated before
 - Process for 3-5 μm Microvia integration for < 20 μm pitch chip-to-PKG interconnects on Maskless Aligner has been established
 - 2-5 μm lithography with 1-3 AR has been established on GPE substrates.
 - It is concluded that a planarization step will be required for < 10 μm L/S RDL in GPE

Georgia

Summary

		2019		2020				2021		
		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	
done	1 – Architecture parasitic extraction									
progress	2 – 2um 2.5D RDL Channel									
	5 – 3D RDL Channel									
progress	6 – Thermal Design									
done	7 – Embedding Process									
done	8 – Surface Planarity									
done	9 – TGV Integration									
done	10 – Warpage Control									
progress	10 – 3-5um Blind Via in GPE									
progress	11 – 2-5um L/S RDL in GPE									
	12 – TCB Assembly									
done	13 – 2D GPE TV									
progress	14 – 2.5D GPE TV									
	15 – 3D GPE									
	Light blue: Electrical Blue: Process Development Dark Blue: Integration TV	 Modeling and Design Fabrication Characterization 								

Georgia Tech

Timeline