Fabrication, attachment and
 characterization of solder spheres with multi-layered thin-film coatings for socketing and surface mount applications

Student: Omkar Gupte
Faculty: Dr. Vanessa Smet, Prof. Rao Tummala

This work is sponsored by the Semiconductor Research Corporation (SRC) under task 2017-PK-2792

The authors would like to acknowledge the contributions of industry liaisons from Intel, Dr. Gregorio Murtagian and Dr. Srikant Nekkanty

Research objective: Design and demonstrate a universal board-level interconnection system that can be reliably and simultaneously used in both socketing and SMT applications

Diffusion barriernoble metal coating

Material selection strategies

Approach 1: Traditional diffusion barrier/noble metal coating

- Ni/Au
- Co/Au

Approach 2: Eutectic forming systems

- $\mathrm{Sn}-\mathrm{Bi} / \mathrm{Ag}$
- $\mathrm{Sn}-\mathrm{Bi} / \mathrm{Au}$
- $\mathrm{Sn}-\mathrm{Zn} / \mathrm{Au}$

Ball fabrication
Ball assembly

Package
Solder paste

Socketing

oating dissolves to give SAC-X joint

Reflow ($<250^{\circ} \mathrm{C}$) with solder paste on board

Ball characterization

- Socketing
- SMT
3.1 ENIG coating process on solder spheres

Challenges with

 standard ENIG on solder

Modified process flow for ENIG coating on solder

Cross-section with modified process flow

Coating process with a
combination of sputtering and electroless plating developed

Ability to fabricate coated spheres in large scale for further
processing at Intel
4. Coated solder ball attach
4.1 Solder paste wicking challenge

Objective: Form strong joint with package with preservation of outer Au surface Challenge: Complete solder paste wicking due to excellent wettability of Au

Phenomena occurring during reflow affecting joint strength:

Wicking of paste on Au surface and surface dissolution of coating

Reflowed, non-reacted solder in the joint

Surface dissolution of surface finish on pad and subsequent IMC formation with SF/pad

Complete wicking of solder paste on coated spheres

Strong joint

Experimental validation with coated Cu spheres

- Paste dia: $205 \mu \mathrm{~m}$
- Wicking height: $147 \mu \mathrm{~m}$

- Paste dia: $210 \mu \mathrm{~m}$
- Wicking height:
$135 \mu \mathrm{~m}$
- Horizontal line indicates the wicking height
- SBA: SnBiAg solder paste

Ball diameter $(2 r)(\mu \mathrm{m})$	Pad diameter $\left(2 r^{\prime}\right)(\mu \mathrm{m})$	Solder mask thickness $(\mathrm{h})(\mu \mathrm{m})$	$\mathrm{Vsp}\left(\mu^{3}\right)$	Stencil thickness $(\mu \mathrm{m})$	Stencil diameter $(\mu \mathrm{m})$
225	200	15	1.96 E 6	50.8	222
250	200	15	2.51 E 6	50.8	251

Highest shear strength obtained with printing aperture ~ theoretical limit
Complete wicking with printing aperture > theoretical limit

Georgig Tech

- $\quad \mathrm{Sn} 57 \mathrm{Bi} 1 \mathrm{Ag}$ (SBA) solder paste used to attach coated spheres to the package
- SBA paste printing diameter: 250um

10 spheres per data point

High shear strength obtained with control of wicking and joint formation by controlling solder paste volume and TAL ~ 40 sec window in reflow time to get controlled wicking and significant shear strength

TAL: 94s

TAL: 71s

TAL: 81s

Wicking height
TAL: 66s

TAL: Time above liquidus

5. Shear interface analysis

Pad-side shear interface

Brittle fracture through the solder paste fillet is observed - expected owing to high brittleness of SBA

Faceted and non-faceted phases formed as a result of nucleation of phases at different temperatures and compositions

5.2 SAC305 paste

Package side

Shear interface of ball attached with SAC305 paste

- For coated ball attached with SAC305 paste, brittle fracture occurs partially through solder paste and IMC
- Sn-Ni-P IMC formed at interface

Lower volume of solder in fillet \rightarrow fracture mode changed from ductile to brittle
6. Thermal aging characterization for socketing

Thermal aging at 120 C

- Experimental values follow theoretical predictions
- Experimental values are higher than theoretical predictions - diffusion model considerations

- Shear strength reduced with aging and stabilized at $\sim 15 \mathrm{MPa}$ - trend follows predictions from literature (Coyle, 2000)
- $\sim 57 \%$ reduction in joint shear strength. Reduction due to 1) grain coarsening and 2) depletion of solder volume in the joint during aging due to wicking of paste on the ball

Diffusion barriers forming eutectics with Sn , such as Bi , can aid in getting complete solder ball collapse during SMT

8. Summary and project timeline

Summary:

- Fabricated ENIG coated solder spheres
- Understood and developed ball-attach process of coated spheres
- Characterized coated solder spheres for socketing by thermal aging

Future work:

- Design socketing and SMT test vehicles
- Develop Bi coating process on solder spheres

			2019	2020			
			Q4	Q1	Q2	Q3	Q4
Done	Approach 1: NiAu coating	Diffusion modeling					
Done		Coating fabrication					
		Coated ball attach study					
		Contact modeling					
Progress		Thermomechanical modeling					
Progress		Socketing TV (with Intel)					
Progress		SMT TV					
Done		Diffusion modeling					
Progress	Approach 2: Bi-	Coating fabrication					
Stall	Au coating	Socketing TV					
Stall		SMT TV					

