

Fabrication, attachment and characterization of solder spheres with multi-layered thin-film coatings for socketing and surface mount applications

Student: Omkar Gupte Faculty: Dr. Vanessa Smet, Prof. Rao Tummala

Industry Advisory Board (IAB) November 2019

This work is sponsored by the Semiconductor Research Corporation (SRC) under task 2017-PK-2792

The authors would like to acknowledge the contributions of industry liaisons from Intel, Dr. Gregorio Murtagian and Dr. Srikant Nekkanty

PRC Confidential

Research objective: Design and demonstrate a **universal board-level interconnection system** that can be reliably and simultaneously used in both socketing and SMT applications

3. Prior Work

3.1 ENIG coating process on solder spheres

Challenges with standard ENIG on solder

Modified process flow for ENIG coating on solder

Industry Advisory Board (IAB) November 2019

Cross-section with modified process flow

Coating process with a combination of sputtering and electroless plating developed

Ability to fabricate coated spheres in large scale for further processing at Intel

PRC Confidential

Objective: Form strong joint with package with preservation of outer Au surface Challenge: Complete solder paste wicking due to excellent wettability of Au

4. Coated solder ball attach

4.2 Theoretical solder paste volume calculations

Wicking height

$$Vsp = \pi(r^3 + (r')^2h) - \frac{2}{3}\pi r^3$$

• r = Ball radius

Georgia

Tech

- r' = Pad radius
- h = Solder mask thickness surface finish thickness

- Paste dia: 205µm
- Wicking height: 147µm

- Paste dia: 210µm
- Wicking height: 135µm
- Horizontal line indicates the wicking height
- SBA: SnBiAg solder paste

Highest shear strength obtained with printing aperture ~ theoretical limit Complete wicking with printing aperture > theoretical limit

Experimental validation with coated Cu spheres

Industry Advisory Board (IAB) November 2019

Georgia 4. Coated solder ball attach 4.2 Wicking and shear strength dependence on reflow time

- Sn57Bi1Ag (SBA) solder paste used to attach coated spheres to the package
- SBA paste printing diameter: 250um

10 spheres per data point

High shear strength obtained with control of wicking and joint formation by controlling solder paste volume and TAL ~40 sec window in reflow time to get controlled wicking and significant shear strength

Industry Advisory Board (IAB) November 2019

Brittle fracture through the solder paste fillet is observed – expected owing to high brittleness of SBA

Faceted and non-faceted phases formed as a result of nucleation of phases at different temperatures and compositions

Industry Advisory Board (IAB) November 2019

5. Shear interface analysis

5.2 SAC305 paste

PRC Confidential

Package side

Georgia Tech

Shear interface of ball attached with SAC305 paste

- For coated ball attached with SAC305 paste, brittle fracture occurs partially through solder paste and IMC
- Sn-Ni-P IMC formed at interface

100µm

EDX maps of shear interface P content in surface finish ~ 20%

Lower volume of solder in fillet → fracture mode changed from ductile to brittle

Industry Advisory Board (IAB) November 2019

Georgia 6. Thermal aging characterization for socketing

Thermal aging at 120 C

- Experimental values follow theoretical predictions
- Experimental values are higher than theoretical predictions – diffusion model considerations

- Shear strength reduced with aging and stabilized at ~15MPa - trend follows predictions from literature (Coyle, 2000)
- ~57% reduction in joint shear strength. Reduction due to **1**) grain coarsening and **2**) depletion of solder volume in the joint during aging due to wicking of paste on the ball

Georgia Tech 7. Eutectic forming diffusion barriers

Diffusion barriers forming eutectics with Sn, such as Bi, can aid in getting complete solder ball collapse during SMT

SMT

PRC Confidential

SR

Socketing

Summary:

- Fabricated ENIG coated solder spheres
- Understood and developed ball-attach process of coated spheres
- Characterized coated solder spheres for socketing by thermal aging Future work:
- Design socketing and SMT test vehicles
- Develop Bi coating process on solder spheres

			2	019		2020									
				Q4		Q1	Q	Q2 Q3		23		Q4			
Done	Approach 1: Ni- Au coating	Diffusion modeling													
Done		Coating fabrication													
Done		Coated ball attach study													
Progress		Contact modeling													
Progress		Thermomechanical modeling													
Progress		Socketing TV (with Intel)													
Progress		SMT TV													
Done	Approach 2: Bi- Au coating	Diffusion modeling													
Progress		Coating fabrication			_										
Stall		Socketing TV													
Stall		SMT TV													