

Students: Ningyuan Cao, Muya Chang Faculty: Arijit Raychowdhury

Industry Advisory Board (IAB) November 2019

Georgia Tech

Semiconductor Research Corporation under grant JUMP CBRIC task ID 2777.006.

Georgia Tech

1. A Hybrid-Digital-Mixed-Signal Computing Platform for Accelerating Swarm Robotics

Motivation

Multi-robot patrolling

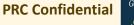
Multi-robot predator-prey

 $\frac{\text{ReLU}(\sum x_i w_i)}{\tanh(\sum x_i w_i)}$

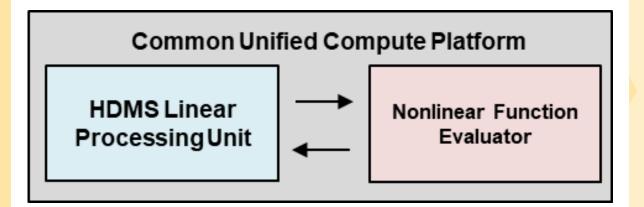
linear operation nonlinear activation

Model-Based

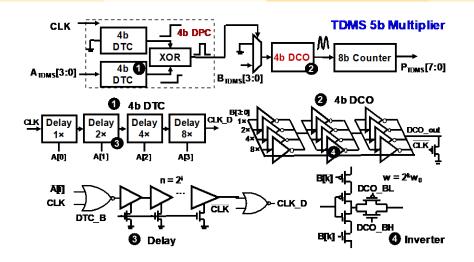
Obstacle/collision avoidance

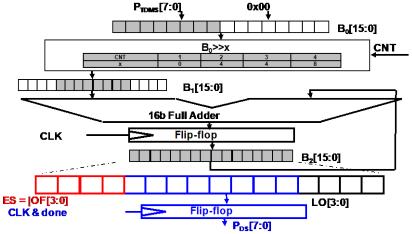

Pattern-formation

 $\sum x_i \cos(y_{id})$ $\sum x_i tanh (sqrt(y^2-y_1^2)/\zeta)$


Nonlinear function Linear operation

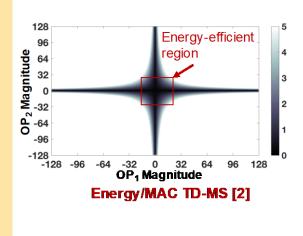
Architecture

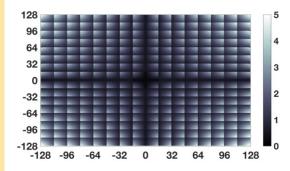




Linear Processor Circuit Diagram

5b-8b Digital Add-shifter

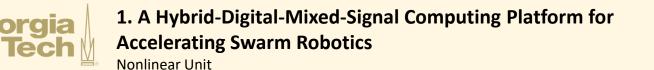

Industry Advisory Board (IAB) November 2019


Georgia Tech

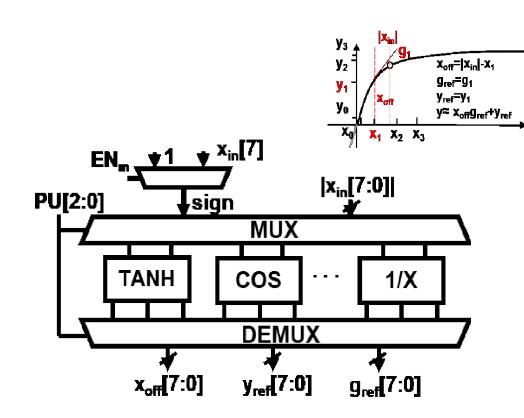
1. A Hybrid-Digital-Mixed-Signal Computing Platform for Accelerating Swarm Robotics

Georgia Tech

Energy Map

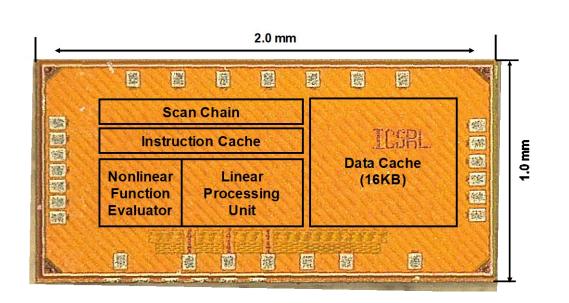


Energy/MAC HDMS (This Work)


No. Bits	TD-MS		HDMS		
	Average	Worst	Average	Worst	
3	0.10	0.49	0.19	0.52	
4	0.14	0.56	0.16	0.61	
5	0.28	0.72	0.29	0.74	
6	0.64	1.74	0.69	0.94	
7	2.21	3.86	0.70	1.02	
8	5.82	9.32	0.69	1.27	

Energy/MAC (Normalized to Digital)

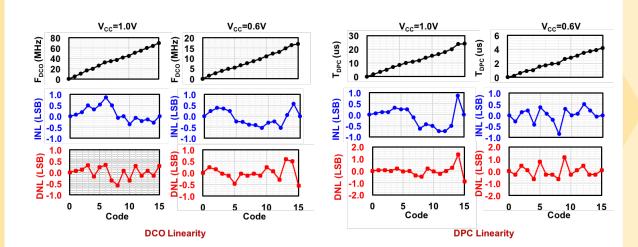
Industry Advisory Board (IAB) November 2019


Georgia

Georgia Tech

1. A Hybrid-Digital-Mixed-Signal Computing Platform for Accelerating Swarm Robotics

Chip characteristic

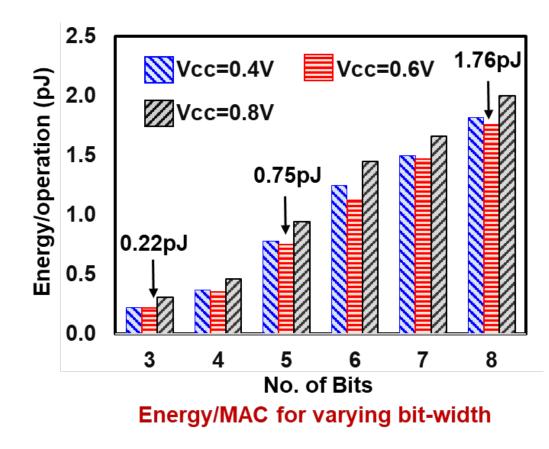

Chip Characteristics					
Technology	65nm 1P9M CMOS				
Die area	1mm*2mm				
Testing interface	QFN package				
Pin Count	28				

Industry Advisory Board (IAB) November 2019

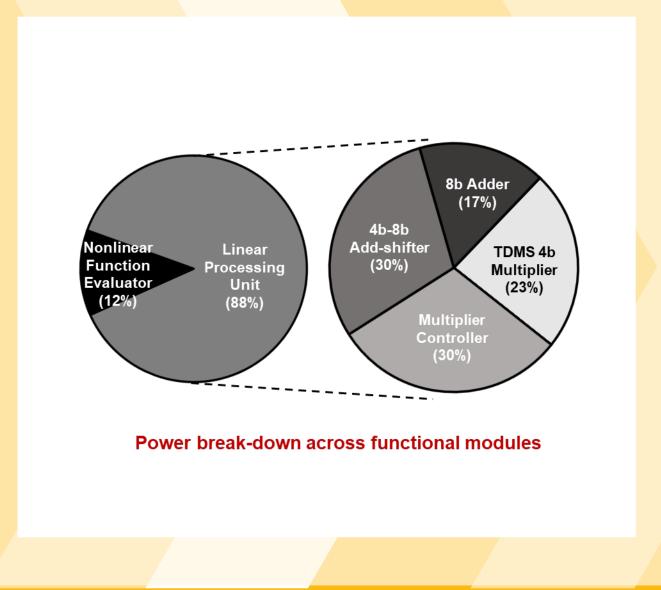
Nonlinearity measurements

Industry Advisory Board (IAB) November 2019

Georgia Tech



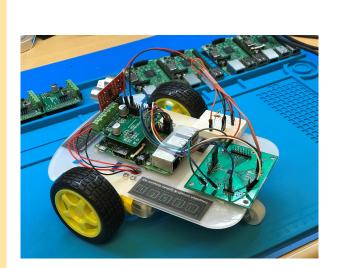
1. A Hybrid-Digital-Mixed-Signal Computing Platform for Accelerating Swarm Robotics

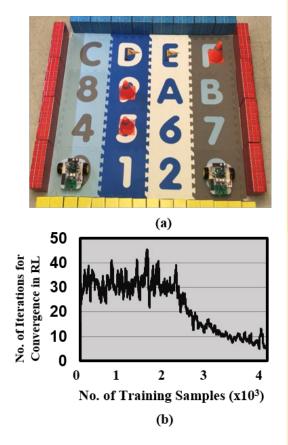


Power breakdown

Georgia Tech

1. A Hybrid-Digital-Mixed-Signal Computing Platform for Accelerating Swarm Robotics


Comparison table


	This work	[2]	[3]	[4]	[5]	[6]
Application	Swarm intelligence	Autonomous micro- robotics	CNN Inference	DNN Inference	CNN Inference	CNN Inference
Optimization algorithm	Cooperative RL/potential field	Reinforcement Learning	none	none	none	none
Learning/Training	Online in real time	Online in real time	offline	offline	none	offline
Technology	65nm	55nm	180nm	65nm	65nm	65nm
Area	2mm ²	3.4mm ²	3.3mm ²	16mm ²	16mm ²	16mm ²
On-die SRAM	16 KB	200 B	144 KB	36 KB	490.5 KB	181.5 KB
Resolution	3-8b	6b	4b-16b	16b	16b	16b
Power	0.3-3.4 uW	650 uW	7.5-300 mW	45 mW	6.57 mW	278 mW
Frequency	1KHz-1.5MHz	67.5 MHz	200 MHz	125 MHz	10 - 100 MHz	200 MHz
Supply voltage	0.4-1V	0.4-1V	1V	1.2V	0.7-1.2V	0.82-1.17V
Performance/Watt	1.1-9.1 TOPS/W	3.12 TOPS/W	0.26-10TOPS/W	1.42TOPS/W	11.8 - 19.7 GOPS	0.21TOPS/W

Demonstration

