



# Feasibility of integrated single-stage 48V to 1V conversion using GaN power devices

Minxiang Gong Arijit Raychowdhury

Industry Advisory Board (IAB) November 2019



Georgia Tech



Research Centers ....

Liaisons ....

## Georgia 1. Introduction



### **Conventional board net: 12V**

Board net at its power limit
High wiring costs: >70 kg, >2.5 km

## Introduction of 48V board net:

- Enable new high-power applications
- More power/better efficiency, CO<sub>2</sub> reduction

## Conventional power distribution: 12V

- High current/wiring cost
- Up to 10 PSU close to server blades

## Introduction of 48V power distribution:

- Lower transmission loss
- 1 central PSU





## A Integrated 48V to 1V single-stage DC-DC regulator for point-of-load:

- High efficiency (>90%), high output current (10A)
- Integrated with load chip in same package

2. Target

Georgia

Tech





## Georgia 4. Topology



## Linear regulator:

Cons:

□ simple

no switching noise

Iow ripple

Pros:

VIN

 $\Box$   $\eta$  = Vout/Vin

Error amp



VIN

Vo

## Switching regulators:

Cons:

- High efficiency at high input voltage
- Passive scales with frequency Pros:
- Hard to integrate large passives
- High ripple
- Low efficiency at light load current



Industry Advisory Board (IAB) November 2019

| Ge                                               | eorgia<br>Tech                      | 5. Silicon vs GaN                                                   |                                                                                                 | PRC Confidential     | rgia Tech |
|--------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------|-----------|
|                                                  |                                     | Body +<br>Source Gate Drain<br>P+ N+<br>P Well EFF N Well<br>P+ Sub | Source/Body<br>N+<br>P+<br>Pbody<br>N <sub>drift</sub><br>N-HEI or NBL<br>N+ substrate<br>Drain |                      |           |
|                                                  |                                     | Si – Lateral                                                        | Si – Vertical                                                                                   | GaN                  |           |
|                                                  | Switch                              | Fully integrated                                                    | External                                                                                        | External             |           |
|                                                  | I <sub>out</sub>                    | <5A                                                                 | >5A                                                                                             | >5A                  |           |
|                                                  | Q <sub>G</sub> ⋅R <sub>DSon</sub>   | Low 2-                                                              | 5x Medium 2                                                                                     | -4x High             |           |
|                                                  | Q <sub>oss</sub> ·R <sub>DSon</sub> | Low 1                                                               | 0x Medium 1                                                                                     | 5x High              |           |
|                                                  | Area · R <sub>DSon</sub>            | Low 3                                                               | X Medium <u>1</u>                                                                               | <mark>5x</mark> High |           |
|                                                  | dV <sub>sw</sub> /dt                | <50V/ns                                                             |                                                                                                 | Up to 500V/ns        |           |
| Comparison between silicon and GaN power devices |                                     |                                                                     |                                                                                                 |                      |           |
| Industry Advisory Board (IAB)                    |                                     |                                                                     |                                                                                                 |                      |           |

November 2019

## Georgia 6. System architecture 6.1 Slide Subtitle



## Synchronous buck converter with GaN power devices:

- Low voltage PWM controller: voltage regulate and dead time control
- Level shifter: signal voltage level changing
- Bootstrap circuit: high side GaN device drive
- Gate driver: provide enough drive strength for large GaN device





Georgia Tech



## 7. Loss analysis

#### 7.1 Slide Subtitle



### Main losses:

- **Conduction** loss
- Switching loss in MOSFET
- Reverse recovery loss of diode
- Dead time loss

- Output capacitor loss in MOSFET
- **Gate charge** loss
- Inductor conduction loss
- Capacitor loss

Industry Advisory Board (IAB) November 2019



## Georgia 8. Challenges 8.1 Dead time control

## **Dead time related losses:**

- Dead time too long: reverse recovery loss and body diode conduction loss
- Dead time too short: non zero-voltage switching (must avoid)
- Optimal dead time: loss eleminated



**PRC Confidential** 

Georgia 9. Challenges 9.1 High speed level shifter



## Sub-nano delay high voltage level shifter:

- High speed: dV/dt > 20V/ns
- Small delay: < 1ns</p>
- Low static power



Industry Advisory Board (IAB) November 2019

**PRC Confidential** 



## **SPICE simulation results with GaN model and Verilog A**

**10. Results** 

10.1 efficiency



Industry Advisory Board (IAB) November 2019

Georgia

Tech

Georgia 11. results 11.1 level shifter and loss breakdown

## Simulation results of level shifter and loss breakdown



#### Industry Advisory Board (IAB) November 2019

#### Georgia Institute of Technology



Georgia Tech

# Georgia 12. Conclusion



#### **Conclusion**:

- A feasibility study of single-stage 48V to 1V conversion
- Peak efficiency can achieve 75% with proper dead time control

#### Next step:

- New dead time control and current voltage sensing scheme
- High speed and high reliability level shifter

#### **Reference:**

- [1] Wittman, JSSC16
- **[2]** Barner, APEC16
- **[3]** Aklimi, JSSC17
- **[4]** Liu, JSSC15
- □ [5] Xue, ISSCC16
- **[6] Ke**, ISSCC16
- [7] Seo, ECCE18

- □ [8] Das, APEC19
- [9] Rentmeister, APEC17
- □ [10] TI, PMP4497
- □ [11] TI, PMP4486
- □ [12] ViCOr, PI3523-00-LGIZ
- □ [1<mark>3] ViCOr, PI354</mark>2-00-xGIZ