

Architecture, Chip, and Package Co-design Flow for 2.5D IC Design Enabling Heterogeneous IP Reuse

Students: Jinwoo Kim, Gauthaman Murali, Heechun Park, Eric Qin, Hyoukjun Kwon, Venkata Chaitanya Krishna Chekuri, Nihar Dasari, Arvind Singh, Minah Lee, Hakki Mert Torun, Kallol Roy

Faculty: Madhavan Swaminathan, Saibal Mukhopadhyay, Tushar Krishna, and Sung Kyu Lim

Industry Advisory Board (IAB) November 2019

DARPA CHIPS Georgia Tech Team

Jinwoo Kim (jinwookim@gatech.edu) Sung Kyu Lim (limsk@ece.gatech.edu)

- Block-level heterogeneous integration
- Chiplet: independently designed IP
 - with most suitable technology node
- Simply reuse off-the-shelf chiplets
- Reduce design time and complexity

Georgia

Tech

Georgia Tech

1. 2.5D Chiplet Integration with an Interpose

1.2 Comparison between Traditional Designs

	2D IC Design	2.5D Chiplet Integration	PCB IC Integration
Design time	Worst	Medium	Best
Performance	Best	Medium	Worst
Area	Best	Medium	Worst
Heterogeneity	Worst	Best	Best

Right1: Intel's FOVEROS product Right2: AMD's 7 nm Zen 2 based EPYC processors

Georgia Tech

We propose:

RISC-V based 64-core architecture as a benchmark design A vertically-integrated EDA flow for 2.5D IC design A new protocol, Hybrid-Link, for 2.5D chiplet communication

- We build a monolithic 2D IC and an interposer-based 2.5D IC
 - Technology node: commercial 28 nm and 130 nm
- We analyze the power-performance-area overhead of 2.5D IC design

- 64 RISC-V cores [1] (5-stage in-order)
 - 2MB L1 & 8MB L2 cache
- Centralized Network-on-chip (NoC) arbiter[2]

Rocket

tile

Rocket

tile

Rocket

tile

tile

NoC

IV/R

tile

- 4-channel memory controller
- Integrated voltage regulator & digital low-dropout regulator

The architecture of ROCKET-64 ►

[1] K. Asanovic et al., The Rocket Chip Generator, Technical Report UCB/EECS-2016-17, 2016

Memory controller

[2] Opensmart: Single-cycle multi-hop NoC generator in BSV and chisel

- Default flit width: 40 bits
 - Lightweight mode: simple point-to-point connections
 - Extended mode: more complex transactions (e.g., coherence transactions from CPU to memory)

▲ The size of chiplet vs. I/O counts

Georgia Institute of Technology

Georgia Tech

PRC Confidential

DARPA

- Chip-to-package co-design and analysis flow
 - Using commercial tools
 - For design: Cadence SiP Layout, Cadence Innovus, ANSYS HFSS
 - For analysis: Synopsys PrimeTime, Synopsys Hspice

▲ A vertically-integrated EDA flow

Georgia Tech

PRC Confidential

DARPA

Georgia 5. A Vertically-integrated EDA Flow 5.2 Chiplet Design (commercial 28 nm/130 nm PDK)

- Regular bump assignment
 - P/G bumps at periphery and signal bumps in the center
- Area I/O placement

November 2019

- I/O drivers as macro cells
- Chiplet design results (GDS layouts)

5. A Vertically-integrated EDA Flow

5.3 Silicon Interposer Design

1. Interposer technology file import - based on TSMC CoWoS[®] [1]

Georgia

Tech

2. Chiplet placement - 27 chiplets (6 types), 10 passives

[1] R. Chaware et al., Assembly and reliability challenges in 3D integration of 28nm FPGA die on a large high density 65nm passive Interposer, ECTC, 2012

5. A Vertically-integrated EDA Flow Georgia Tech

5.3 Silicon Interposer Design (continued)

- I/O driver design
 - Digital inverter with full-swing signal
 - Impedance matching to eliminate reflections
 - Final driver size: \times 128 / Z_{out} = 47.4 Ω

▲ Timing simulation testbench

PRC Confidential

DARPA

Worst case propagation delay = 152.3 ps Maximum power consumption = 0.33 mW

Power calculation

To reflect various wirelength in silicon interposer.

$$P_{2.5D} = P_{CORE} + P_{I/O}$$

 P_{CORE} : the power of chiplet core

 $P_{I/O}$: the power of I/O drivers

Industry Advisory Board (IAB) November 2019

5. A Vertically-integrated EDA Flow

5.5 Signal/Power Integrity

Signal integrity on a complex interconnect channel

Georgia

Tech

▲ Eye diagram

PDN model and IVR model for power integrity

- PDN DC resistance: 20.1 mΩ
- Power delivery efficiency: 89.7%

PPA Analysis Result Comparison

The overhead of interposer-based 2.5D

2.5x area

Georgia

Tech

- **1.008x total power** ۲
- 17.0x average wire length ۲

	2D Design	2.5D Design
Target Freq. (GHz)	1.0	1.0
Min. wirelength (μm)	0.3	780
Avg. wirelength (μ m)	222.4	3,781.9 (<mark>17.00x</mark>)
Max. wirelength (μ m)	1,435.1	7,020 (<mark>4.89x</mark>)
Cell #	7,887,365	7,979,736 (<mark>1.01x</mark>)
Total power (W)	8.948	9.023 (<mark>1.008x</mark>)
Logic power (W)	8.948	8.703 (<mark>0.97</mark> x)
I/O power (W)	-	0.320
Area (mm²)	53.14	111.65 (<mark>2.5x</mark>)
Footprint (mm x mm)	7.29 x 7.29	10.30 x 10.84

Rocket tile

(a) Monolithic 2D design

(b) Interposer-based 2.5D design

- Our vertically-integrated EDA flow
 - Covers and fully automates the whole design phase of architecture, circuit and package
- ROCKET-64: RISC-V based 64-core architecture
 - 2.5D overhead: 2.5x area, 1.008x power, and 17.0x average wire length increment
- Hybrid-Link: a new standard protocol for 2.5D integration
 - Enables low number of chiplet I/Os with the full functions
- Our work, for the first time, serves as a full set of quantified comparison results of the 2.5D and 2D designs
 - enables the SoC designer to have an objective criteria of evaluating interposer-based design