

RTL-to-GDS Tool Flow and Design-for-Test Solutions for Monolithic 3D ICs

Heechun Park (Post-Doctoral Fellow) Sung Kyu Lim (Faculty)

Industry Advisory Board (IAB) November 2019

Georgia Tech 1. Introduction

- Monolithic 3D (M3D) IC: Maximize 3D IC benefits
 - Massive inter-tier connections: Inter-layer via (ILV)
- Issues on M3D IC
 - Lack of EDA tools for M3D IC
 - ILV: Vulnerable to defects (shorts, opens, SAFs, ...)
 - Resistive RAM (ReRAM): No automated methods
- This work proposes...
 - RTL-to-GDS design flow for M3D IC
 - Design-for-Test (DfT) method for ILV faults
 - ReRAM module generator

PRC Confidential

Georgia Tech

Georgia Tech 2. Monolithic 3D IC Design Flow

- RTL-to-GDS design flow is proposed
- 2D CAD tools are utilized
 - → Guarantee commercial quality

Industry Advisory Board (IAB) November 2019

Industry Advisory Board (IAB) November 2019

2. Monolithic 3D IC Design Flow

- TABLE: 2D vs. M3D PPA comparison
- \rightarrow Less power (-4%), Less area (-50%)
- → Comparable WNS: < 10% of clock period</p>

	Rocket2, 800MHz		AVC-Nova, 730MHz			AES-128, 3.44GHz			
	2D	M3D	$\Delta(\%)$	2D	M3D	$\Delta(\%)$	2D	M3D	$\Delta(\%)$
Footprint (mm^2)	0.746	0.373	-50.01	0.286	0.142	-50.21	0.210	0.105	-50.2
Std. cell count	279983	278622	-0.49	132725	132299	-0.32	109878	109634	-0.22
Std. cell area (mm^2)	0.363	0.362	-0.30	0.190	0.189	-0.79	0.124	0.121	-2.71
Wirelength (<i>mm</i>)	4712.46	4045.65	-14.15	2336.97	1954.92	-16.35	1494.13	1196.88	-19.89
ILV count	0	111395		0	56989		0	44782	
Total Pwr. (mW)	371.90	366.25	-1.52	122.50	120.31	-1.79	269.59	258.96	-3.95
Net Switching Pwr. (mW)	82.70	78.00	-5.68	23.55	22.32	-5.20	67.65	61.57	-8.99
Cell Internal Pwr. (mW)	224.84	224.26	-0.26	63.46	63.20	-0.41	174.66	171.86	-1.60
Leakage Pwr. (mW)	64.36	63.99	-0.58	35.50	34.79	-1.99	27.29	25.52	-6.48
Worst Neg. Slack(ps)	-54.27	-49.47		-60.48	-135.57		-14.88	-26.87	

Georgia

Tech

Georgia Tech

Georgia Tech 3. Design-for-Test Solutions for M3D IC

- Built-in-self-test (BIST) architecture
- → Test shorts, opens, and stuck-at-faults (SAFs)
- Less power/area overhead

Georgia Tech

3. Design-for-Test Solutions for M3D IC

Dual-BIST structure: minimize masking probability

Georgia

Tech 🛛

3. Design-for-Test Solutions for M3D IC

Industry Advisory Board (IAB) November 2019

Georgia

Georgia Institute of Technology

BIST-inserted M3D Design

3. Design-for-Test Solutions for M3D IC

- TABLE: Overhead of BIST architecture
- → Area (1~2%), Power (2~8%)

Circuit	Metric	N-BI	BI	Overhead (%)	
Rocket2	Cell area (μ m ²)	382037.6	389785.6	2.03	
	Power (mW)	227.3607	232.5544	2.28	
AVC-Nova	Cell area (μ m ²)	196841.5	199038.7	1.12	
	Power (mW)	87.46587	90.79729	3.81	
AES-128 (I)	Cell area (μ m ²)	132049.9	134771.2	2.06	
	Power (mW)	178.5411	194.3433	8.85	
AES-128 (II)	Cell area (μ m ²)	103632.4	106324	2.6	
	Power (mW)	110.96	119.42	7.63	

- TABLE: Area reduction of dual-BIST architecture
- → -32~38% w.r.t. original BIST

Benchmark	Baseline DfT (μ m ²)	Dual-BIST (μ m ²)	Reduction (%)
Rocket2	12288	7748	36.9
AVC-Nova	3246.1	2197.2	32.3
AES-128 (I)	4352	2721.3	37.5
AES-128 (II)	4362.2	2691.6	38.3

Industry Advisory Board (IAB) November 2019

Georgia

Tech

Georgia 4. ReRAM Module Generator

- ReRAM: On-chip non-volatile memory (NVM)
- Previous works
 - ReRAM device technology & custom macro design
 - ReRAM architecture analysis tool

→ Lack of EDA methods and tools for ReRAM sub-array & large macro design

PRC Confidential

Georgia Tech 4. ReRAM Module Generator

- ReRAM module generator: Top view
- → Sub-array design → Large macro → DSE

Industry Advisory Board (IAB) November 2019

TABLE: Designs from ReRAM module generator
TTTR ReRAM cells, 65nm CMOS technology

Sub-Array	Total Capacity 8kB					
	Area (mm^2)	$R.E^*(pJ)$	W.E.* (pJ)	Top.E.**(pJ)		
64x64	0.605	22.10	36.44	19.13		
128x128	0.279	11.25	38.40	5.30		
256x256	0.125	13.19	65.91	1.31		
	Total Capacity 32kB					
64x64	2.421	64.14	78.48	61.17		
128x128	1.073	30.08	57.24	24.14		
256x256	0.530	19.01	71.73	7.13		

Heechun Park, Kyungwook Chang, Bon Woong Ku, Jinwoo Kim, Edward Lee, Daehyun Kim, Arjun Chaudhuri, Sanmitra Banerjee, Saibal Mukhopadhyay, Krishnendu Chakrabarty, and **Sung Kyu Lim**, "RTL-to-GDS Tool Flow and Design-for-Test Solutions for Monolithic 3D ICs," in *ACM/IEEE Design Automation Conference (DAC)*, 2019

Georgia

Tech

References

Georgia Tech

"RTL-to-GDS Tools and Methodologies for Sequential Integration Monolithic 3D ICs" Project, in Three-Dimensional System-on-a-Chip (3DSoC) Program, DARPA