

Substrate-embedded, magnetic core inductors for Integrated Voltage Regulators

Faculty: Dr. Himani Sharma Prof. R. Tummala Prof. M. Swaminathan Students: Srinidhi Suresh Claudio Alvarez

Industry Collaborator: Panasonic (Daisuke Sasaki, Kazuki Watanabe, Ryo Nagatsuka, Cheng Ping Lin, Tatsuyoshi Wada, Naoki Watanabe)

Outline

- □ Goals & Objectives
- Prior Work
- Technical Approach
- Results & Key Accomplishments
- **Comparison with Prior Art**
- □ Schedule
- **G** Summary

Goals and Objectives

Design and demonstrate embedded inductors to yield a low power module with:

- Power density: 2 A/mm²
- Miniaturized modules:
 - Inductor thickness < 300 µm •
 - Added thickness due to passives ~100 µm •
- Single-stage power conversion close to load
- Short PDN path
 - Losses (interconnects and passives): < 5%

Georgia Institute of Technology

Nov. 7-8, 2019

3

Prior Work

- New magnetic materials with high permeability but high loss:
 - Loss analysis indicated high permeability was critical in energy saving
- Measured electrical parameters and established mechanical performance of the composite:
 - Low-frequency permeability: 140 at 10 MHz, High-frequency permeability: 25 at 140 MHz
 - Good adhesion of composite to ABF (952 g/cm)
 - The magnetic composites were tested for their endurance to different via drilling processes: UV, IR, CO₂
- Modeled different inductor topologies for high permeability cores meeting target objectives

- Embedding process was developed to integrate inductors into the substrate
- Modeled and fabricated spiral (2D) inductors for low-frequency IVRs:

Metrics	Inductance (nH/mm ²)	DC Resistance (m Ω)	Thickness (mm)
Objectives	10	< 10	0.5
Fabricated Performance	12.43	15.2	0.4

Georgia Tech

Inductor Packaging Evolution

PRC Confidential

Current Approach for Inductor Fabrication

Virginia Tech: Inductor in PCB Substrate

• PCB-embedded ferrite and metal flake composites Ref: Su et al. IEEE 2013

Tyndall: On-chip inductors

Thin magnetic films; coupled inductor designs
Ref: Wang et al. IEEE 2010

Nov. 7-8, 2019

Georgia Tech

CENTER

Embedding Challenges Magnetic Core Materials **Metal Laminates** Ferrites **Microcomposites** Materials Inductors: Low current Inductors: Higher cost • Low volumetric density Low power handling • Thicker component Nanostructured Self-assembled Low stability

Georgia Institute of Technology

Nov. 7-8, 2019

٠

٠

٠

٠

Substrate Material Selection

Material	Ferrite	Sputtered thin-films	Metal-polymer composites	
Freq. stability				Current focus
Loss				
Permeability				
Scalability				
Current handling				
Substrate compatibility				

- Ferrite, metal-polymer composites and sputtered thin-films are considered as the candidate for magnetic substrate
- Metal-polymer composites provide the best trade-off for density and power-handling

Unique Approach at PRC

Innovative Inductor Designs

Unique inductor designs:

- Spiral inductors (2D)
- Novel toroidal inductors (3D)

Advanced Integration Process

- Substrate-compatible process to integrate inductor into substrates
- Reliability testing Thermal cycling and warpage

Advanced Materials

Magnetic composites for high inductance density

- High permeability
- Trade-off high current handling, DC resistance, and inductance density

Solenoid

Characterization set-up

Electrical characterization

- L vs Frequency
- L vs Current
- DC resistance

PRC Confidential

Spiral

PRC Confidential

Electrical Characterization of Composites

Courtesy: Panasonic

Parameter	Low frequency	High frequency
Permeability (H/m)	150 at 10 MHz	25 at 140 MHz
Loss tangent	0.146	0.230

Required material properties for 96% efficiency:

- The permeability is somewhere in between 50 and 150
- Loss tangent must be less than 0.033
- Magnetic saturation field must be greater than 0.6 Tesla

PRC Confidential

Modeling of Inductor Topologies using Composites

- Planar inductors show lower current handling, but are easier to fabricate
- Solenoid inductors have a comparable inductance but higher current handling

Low-Frequency	Material Design	ned Parameters:
---------------	-----------------	-----------------

	1	2	3	4
I _{DC} [A]	<1.25	<1.25	<1.00	<1.00
L [nH]	23.8	44.1	66.6	116.9
Inductance Density (nH/mm ³)	88.0	101.0	151.6	164.6
R_{DC} [m Ω]	5.5	8.5	9.8	15.7
R_{AC} [m Ω]	227	426	635	1102
$R_{AC} [m\Omega/nH]$	9.6	9.7	9.5	9.4

- Novel Toroid Inductors
- Toroidal inductors show highest inductance because of closed magnetic loops

Georgia Tech

Fabrication Process Flow

Georgia Tech

CENTER

Fabrication of Inductor Topologies

Demonstration of substrate- embedded 2D and 3D inductors for low and high-frequency IVRs

The top view of spiral inductors

0.6 mm

Optical view of planar inductor

Testing pad

Metrics	2D Low Frequency Objectives	2D Low Frequency Fabricated Values	2D High Frequency Objectives	2D High Frequency Fabricated Values	Solenoid Low Frequency Objectives	Solenoid Low Frequency Fabricated Values
Inductance Density (nH/mm ²)	10-20	12.38	6	8.21	10-20	
DC Resistance (mΩ)	5 - 10	9.83	< 10	7.72	5 - 10	To be Measured
Thickness (μm)	500	435	200 - 300	315	200 - 300	

Georgia Institute of Technology

Comparison with Prior Art

Georgia Tech
K.P
PACKAGING RESEARCH
CENTER

	Inductance	Saturation Current	Process Fabrication	Design Complexity
Solenoid				
Toroid				
Spiral				
Stripline				

- Discrete inductors can accommodate higher thickness which leads to high inductance density with lower resistance
- Low loss tangent materials with moderate permeability have been simulated to show high efficiency embedded inductors with low DC resistance
- There is a trade-off between inductance density and DC resistance

Parameters	Targets	GT-PRC	On-chip inductor	Discrete inductor
L/R (nH/mΩ)	~ 20	~ 9.6	0.18	23
Current handling (A/mm ²)	2	2	3-4	0.6
DC resistance (mΩ)	< 10	7.72	1200	5.2

Schedule

- Toroidal single inductor is already designed
- Optimization of fabrication process ongoing
- A single inductor based 4-phase buck converter is in design step
- A Journal paper will be prepared with the analysis results to date
- Next step will be preparing a measurement setup to measure the inductor under DC current bias and with triangular current waveform
- Next iteration will be the design of a tapped inductor-based converter

Georgia Institute of Technology

Nov. 7-8, 2019

Summary

- Modeled and designed spiral inductors for target specifications as below.
 - Low-Frequency: L 10 nH/mm², R 5 m Ω , thickness 0.5 mm
 - High-Frequency: $L = 6 \text{ nH/mm}^2$, $R = < 10 \text{ m}\Omega$, thickness = 0.3 mm
- Developed and optimized process flow for fabricating substrate integrated inductors.
- Fabricated and characterized planar inductors for low and high-frequency applications:
 - Low-Frequency: L 12.38 nH/mm², R 9.83 mΩ
 - High-Frequency: $L = 8.21 \text{ nH/mm}^2$, $R = 7.72 \text{ m}\Omega$
- Fabricated solenoid inductors for low and high-frequency applications
- Modeled novel toroid inductors and currently optimizing the fabrication process

Next Milestones:

- Fabricate toroid inductors and measure the inductance
- Establish effect of undercut on the inductance density
- Lower losses with high L/R_{dc} with filled vias
- Model and fabricate inductors for 48V-1V applications using very low loss materials