

PRC IAB Meeting

Package-Integrated, Low-ESR, High-Density Capacitors for IVR

Faculty:

- Dr. Himani Sharma
- Prof. M. Swaminathan

Industry: Panasonic

- Senshu Takahiro
- Cheng Ping Lin
- Naoki Watanabe

Students:

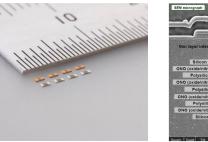
- Grant Spurney
- Mercy Daniel-Aguebor

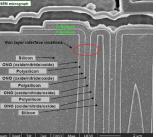
Outline

- □ Goals & Objectives
- Prior Work
- Technical Approach
- Results & Key Accomplishments
- **Comparison with Prior Art**
- □ Schedule
- □ Summary

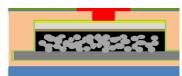
Goals and Objectives

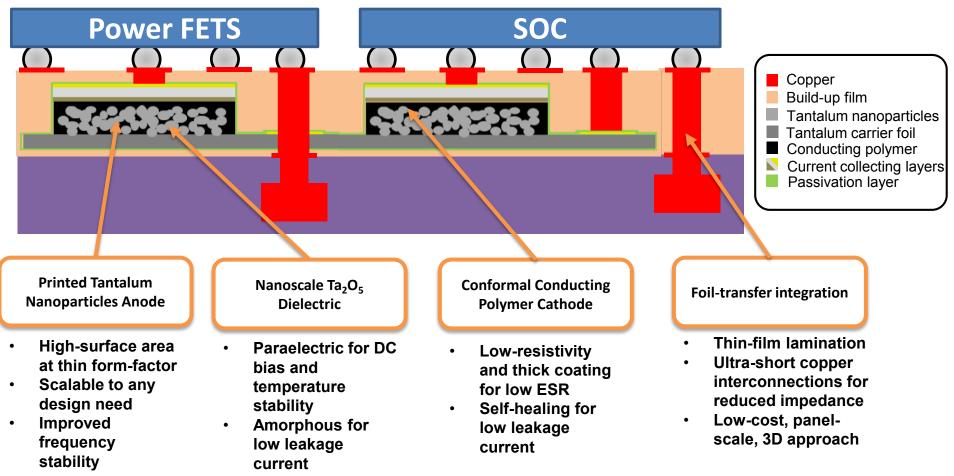
• Demonstrate thin-film tantalum capacitors on silicon with >0.1 μ F/mm² for 3 V and >20 nF/mm² for 48V applications at 10 MHz switching and high current handling




• Specific Objectives & Targets:

Parameter		Objective	Challenges	Tasks	
Capacitance Density at 10 MHz and 100 µm thickness	5 V	>0.1 μF/mm²	Retain high volumetric	Substrate-compatible fabrication using high- surface area, printed Ta	
	48 V	>20 nF/mm ²	density and low ESR for high current handling with		
ESR and Frequency Stability		1-10 MHz ESR <50 milliohm	small form-factor	nanoelectrodes	
3D Package Integration		 ~100 μm interconnects 0% added area 	Capacitor compatibility with via formation and build-up processes	Integration directly on silicon using scalable foil transfer	
Reliability at High Operating Temperature		125 °C	Conducting polymers are susceptible to thermally induced moisture absorption and oxidation	Develop barrier-material strategy to limit moisture infiltration and pass reliability tests	


Prior Art



	Murata Thin MLCC	IPDiA Silicon Trench	AVX Ta Chip	<u>GT Ta Thin-film</u>
Volumetric Density	5 μF/mm³	2 μF/mm³	10 μF/mm³	>10 μF/mm³
Thickness	100 μm	100 µm	600 μm	100 µm
Freq. Stability	10-50 MHz	>100 MHz	300 kHz	1-10 MHz
ESR	~15-50 mΩ	200 mΩ	500 mΩ	~50 mΩ
% ΔC/V	-13 % to -70% (1 to 4 V)	~ 0 %	~ 0 %	~ 0 %
Max. Temp	85° C	150° C	105° C	125° C

Technical Approach

Research Tasks

PRC Confidential

Task 2: Capacitor Task 1: Capacitor Fabrication & Design Integration Design electrode microstructure for high-**Develop process for capacitor** density, improved impedance materials formation characteristics, and frequency stability Sintered and anodized Ta-Ta capacitor equivalent Ta_2O_5 Ta Wire nanoparticles circuit Ta Particles Ta_2O_5 Demonstrate performance of embedded capacitors meeting design objectives PEDOT Ta₂O₅ Simplified Fmbedded FFM model Ta thinof capacitor nanoparticle film capacitor 100 nm 15.0kV 5.8mm x250 BSECOM

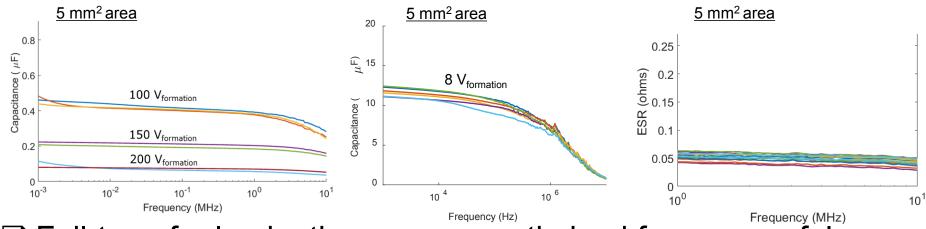
Task 3: Capacitor Reliability Evaluation

Develop material system strategy to limit diffusion of moisture into capacitor structure at high temperatures

Moisture absorption in PEDOT:PSS cathode material

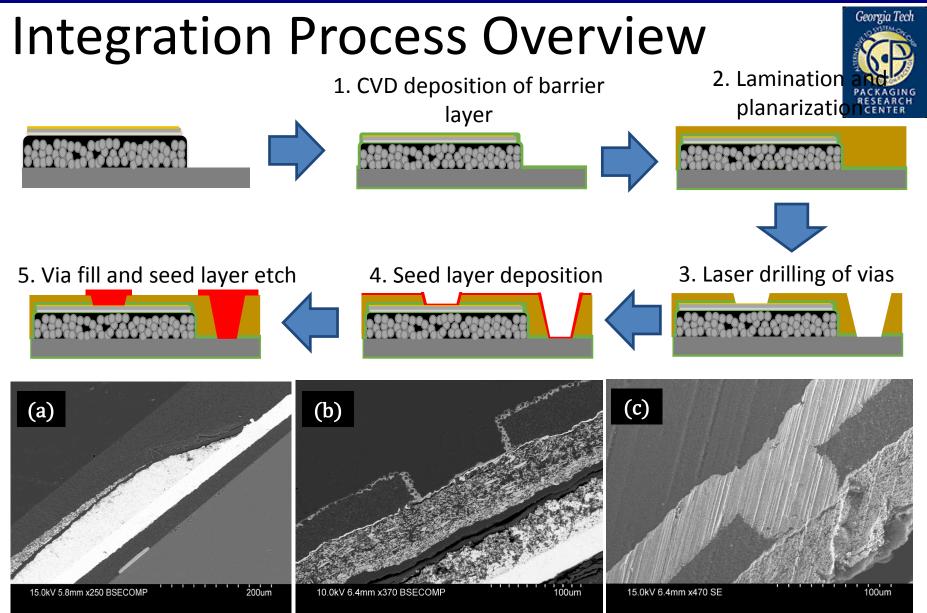
Demonstrate reliability of the capacitors using accelerated stress testing

HAST chamber


Georgia Institute of Technology

Nov. 7-8, 2019

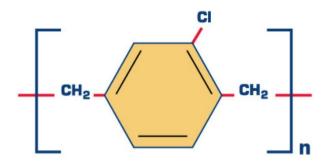
Prior Work



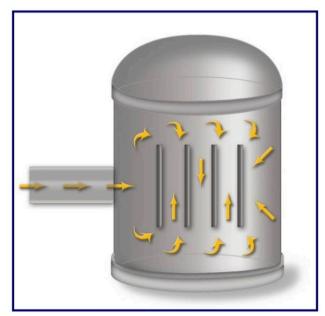
□ Capacitors fabricated and tested meeting designs objectives:

Foil-transfer lamination process optimized for successful capacitor integration on organic, silicon, or glass substrate
 Preliminary reliability testing results showed use of thin-film diffusion barriers improve high-temperature lifetime of capacitors

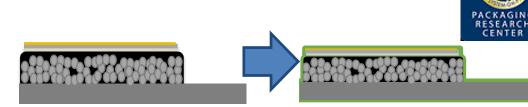
PRC Confidential



(a) Thin-film Ta capacitor laminated and planarized on silicon (b) Thin-film capacitor after laser drilling of via and electroless copper deposition (c) Partially filled copper via contacting Au/silver paste cathode layers


PRC Confidential

Georgia Tech

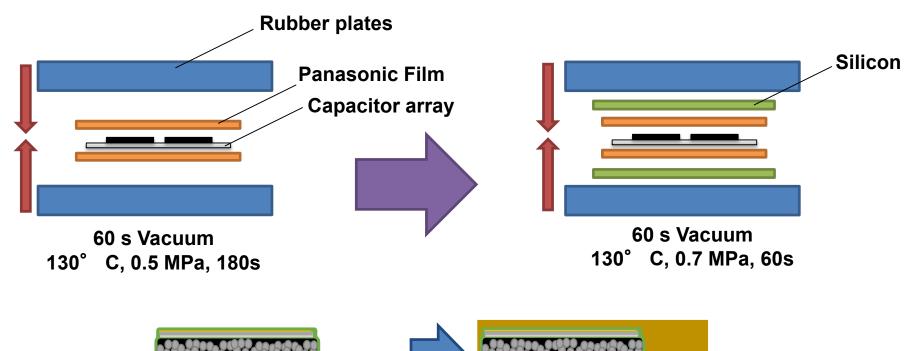

Barrier Layer Deposition of Parylene C using CVD

Linear structure & aromatically stabilized Cl in Parylene C structure \rightarrow *High crystallinity*

Low-temperature CVD of Parylene → Good conformality and strong adhesion

2 µm of Parylene C deposited on all samples

Previously showed thicker Parylene layer can be used to increase number of capacitors passing 85° C/85% relative humidity/3.3 V bias HAST for 335 hours


Parylene C Thickness	500 nm	700 nm	1000 nm
Total Passing Rate	14 %	57 %	75 %

Georgia Institute of Technology

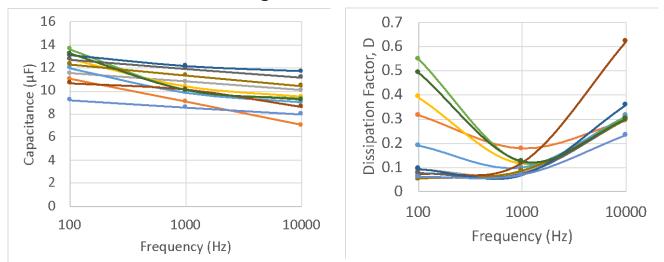
PRC Confidential

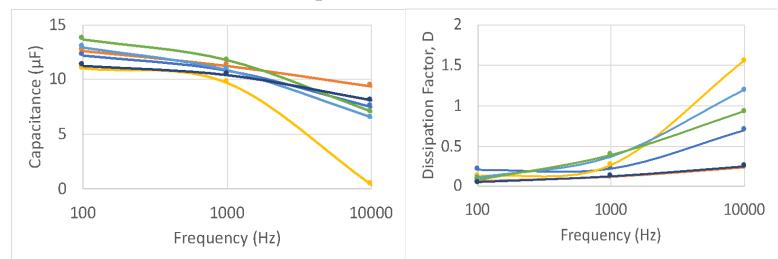
Lamination with Panasonic Film

Laser Drilling of Vias using UV Laser

Drilling conditions:

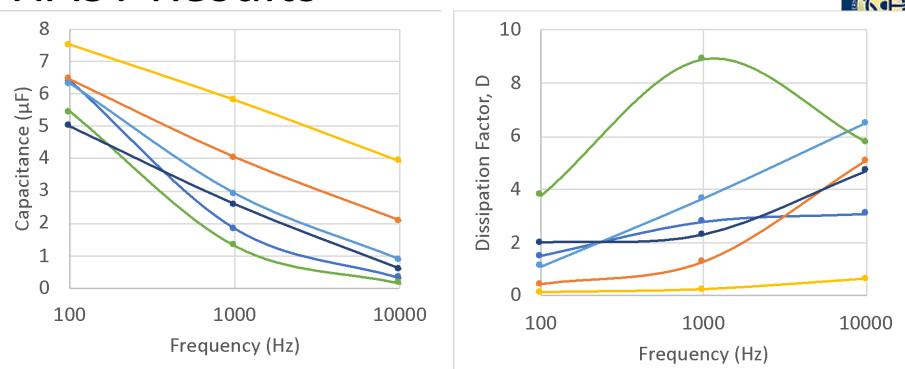
Film:		XV2106FG	XV2105FG	XV2103FG
Power	Anode	12 W	5 W	4.5 W
	Cathode	5 W	5 W	4 W
Repetitions	Anode	100	100	100
	Cathode	100	100	100
Via Opening Diameter	Anode	155 μm	155 μm	155 μm
	Cathode	155 μm	155 μm	155 μm


• Followed by 12 min desmear in Permanganate etch to remove leftover polymer debris


PRC Confidential

Electrical Characterization of Integrated Capacito

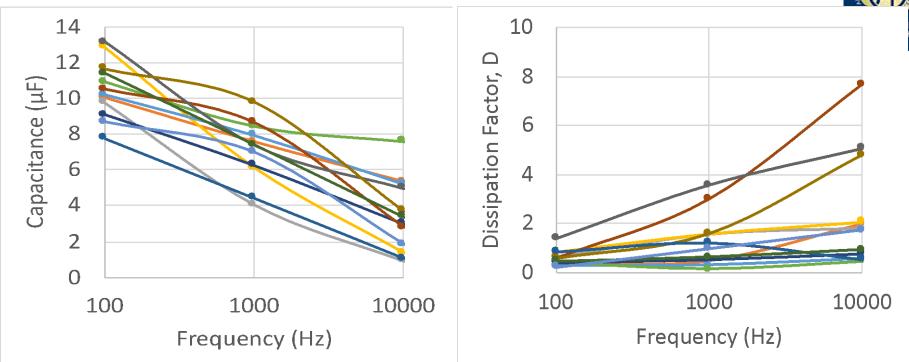
• Measurements of capacitors embedded in XV2103FG film


• Measurements of capacitors embedded in XV2105FG film

PRC Confidential

Georgia Tech

HAST Results


• Measurements of capacitors embedded in XV2105FG film

Average capacitance (1 kHz): 4.07 μ F \rightarrow (-63.8 %) Average Dissipation Factor (100 Hz): 1.38 \rightarrow (+228%) Average ESR (100 kHz): 8.42 $\Omega \rightarrow$ (x 5.32)

PRC Confidential

Georgia Tech

HAST Results

• Measurements of capacitors embedded in XV2103FG film

Average capacitance (1 kHz): 10.27 μ F \rightarrow (-3.85 %) Average Dissipation Factor (100 Hz): 0.934 \rightarrow (+93.4 %) Average ESR (100 kHz): 13.91 $\Omega \rightarrow$ (x 26.2)

Summary

- Capacitors successfully passed 85/85 HAST for 335 hours
 - Some capacitors show ability to pass 125/85 HAST for 96 hours
 - Least amount of degradation observed using XV2103FG film
- XV2103FG film showed the most promising results
 - Very little decrease in capacitance and increase in dissipation factor
 - Thinner form factor
- ESR increased dramatically in most cases, but unclear how much of this can be attributed to the increase in resistance coming from the solder versus the capacitors themselves
- Next phase of project will focus on capacitor integration with magnetic substrate to provide on-package LC power conversion network