

SiC-Based Power Electronics for EV Drive: Introduction

Faculties: Dr. Vanessa Smet Prof. Antonia Antoniou Prof. C.P. Wong Prof. Yogendra Joshi Prof. Madhavan Swaminathan Prof. Deepak Divan, Prasad Kandula (Center for Distributed Energy) Students: Haksun Lee Michael Mauger Kashyap Mohan Jiaxiong Li Justin Broughton Ryan Wong Hakki Torun

Industry Collaborators: Bosch, Toyota

Outline

□ Background & Technical Challenges

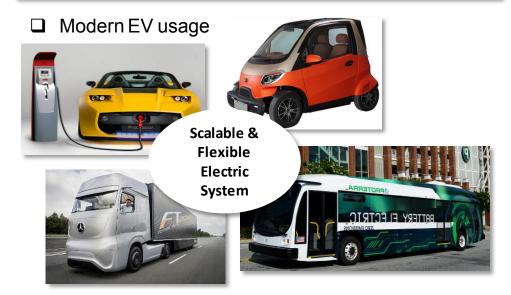
Objectives

Technical Approach

□ Prior Work

- Results & Key Accomplishments
- Comparison with Prior Art

□ Summary

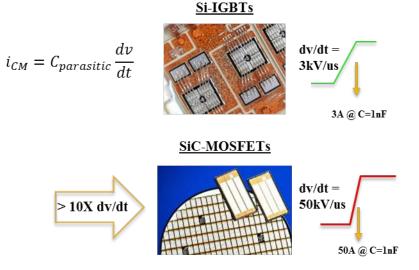

PRC Confidential

Background & Technical Challenges

PRC Confidential

Key Application: Electric Vehicles

D Trend to increase integration density: in-wheel


Source: Protean (~50kW/0.5L)

→ Transition to SiC devices is key to reaching required power densities (2X)

Challenges with SiC: Why Packaging is More Critical

- □ Increased switching speeds: aggravated effect of package parasitics
 - Parasitic L: increased di/dt with SiC
 - Parasitic C: increased dv/dt and common mode noise

- Shrinking of die size and increased power ratings: increased thermal density
 - Hot spot mitigation
 - > Transient thermal performance more critical
 - While SiC devices can sustain higher T_{jmax}, the package will be exposed to increased operating temperatures as well → reliability?
 - \rightarrow Packaging is today the limiting factor in realizing the promises of SiC

PRC Confidential

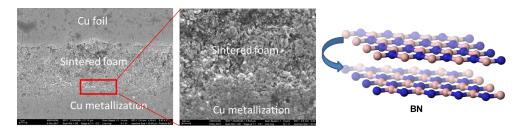
Objectives

Develop and demonstrate advanced packaging solutions for SiC-based power electronics with:

- > Modular design: flexibility in power level
- > Miniaturization: module size ~25% vs. Si \rightarrow 100kW/0.5L for in-wheel inverters
 - ✓ High-frequency switching
 - ✓ Increased functional density with heterogeneous integration (e.g. cooling)
- > Minimized package parasitics (L<5nH, C_{AG} , C_{BG} <0.1pF), increased dv/dt capability \rightarrow wirebond-less
- > High operating temperatures (junction and coolant?) and improved thermal behavior
- > Fundamental understanding of multiphysics trade-offs

Parameters	Current Packaging Solutions	Our Targets
Breakdown Voltage	10kV	>30kV
Heat Flux	200W/cm ²	1kW/cm ²
Max. Junction Temperature	150-175°C	250°C
Thermal Performance	No thermal transient control	Thermal transient suppression
Reliability	Poor at full device rating	Improved

PRC Confidential

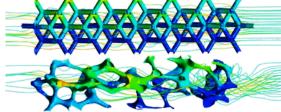

Georgia Tech **Technical Approach** ML-Assisted Design & Heterogeneous Functional Integration Machine learning (ML) based power module optimization (Bayesian active learning) **Circuit Topology 3D Stacked Power Multiphysics** Material **Cooling System** Modeling Innovations Cards Talk by H. Lee With Prof. Y. Joshi Poster by M. Mauger, P. Electrical, thermal, High-temperature, Kandula, D. Divan Die stacking Advanced cold plates mechanical HV mold compounds \geq Non-Consortium (Prof. C.P. Wong) Manufacturing (2-phase) project (ARPA-E) Sintered Cu die- \triangleright Testing Integrated cooling Soft switching attach (with Prof. A (new project, with (current switch) Antoniou) Prof. A. Antoniou) Low-CTE composite conductors (with Prof. Concept: die stacking Advanced cold plate with Sintered A. Antoniou) die attach additively manufactured foam From concept to realization: -Lead-frames Decoupled NP-Cu die-attach functional bridge rectifier SiC device Cu-Zn film Cu foil ~25µm Engineered resin Cu-Zn film & fillers High thermal conductivity thin-10 µm film insulator Georgia Institute of Technology Nov. 7-8, 2019

5

Prior Work: May IAB Recap

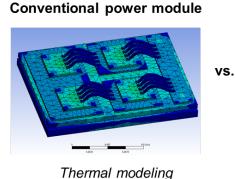
Material Developments

- NP-Cu die-attach insert with compliant Cu foil core (with Prof. A Antoniou)
- Resin / fillers formulation for high-temp. stability
 & high thermal conductivity (Prof. C.P. Wong)



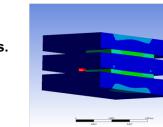
Advanced Cold Plates

Prof. Y. Joshi


- □ Flow loop setup complete
- Stochastic pore-scale model in agreement with experimental results: additively manufactured foams perform best

3D Stacked Power Module

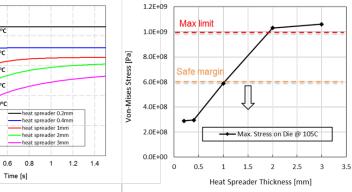
- Thermal modeling: ~5X reduction in junction-to-case Rth vs. conventional module
- □ Trade-off in Cu thickness for stress management: 200µm
- □ Unit fabrication process steps established



62.3°C

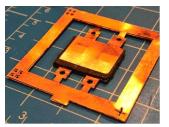
56.4°C

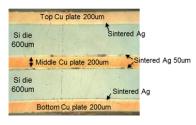
50.7%


14.9°C

3D stacked power module

Stress analysis





Mechanical process demonstrator

PRC Confidential

350

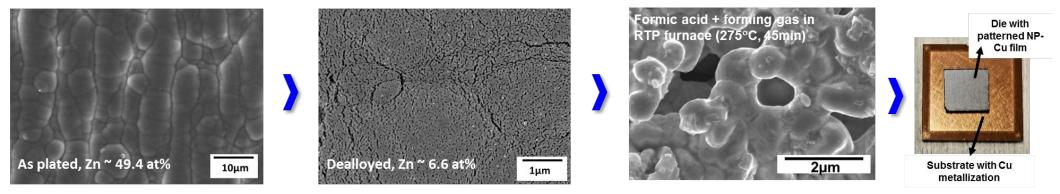
340 도

330

320

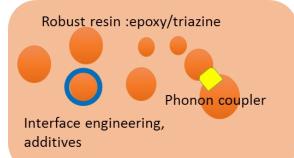
300

0 0.2 0.4


Results & Key Accomplishments: Material Innovations

NP-Cu Die-Attach

PRC Confidential

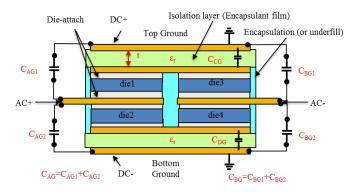

- Collaboration with Prof. A. Antoniou, On Semiconductor, poster by K. Mohan
- Lentified promising precursor alloy composition and dealloying parameters for SAP process manufacturability
- □ High densification confirmed (in formic acid)
- Expected to reach shear strength values of 40-50MPa

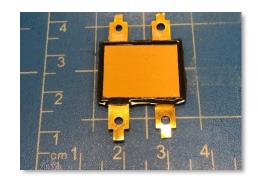
Mold Compounds

- Demonstration of high Tg cyanate ester/ epoxy (CE/EP) copolymer (>250°C)
- Progress in synthesis of BN-coated SiO₂ for high thermal epoxy composite
- Progress in formulation of resin systems for high BDV

Prof. C.P. Wong, poster by J. Li

High Thermal BN/SiO2 Hybrid Filler




Georgia Institute of Technology

Results & Key Accomplishments: Power Module Integration & Cooling

3D Stacked Power Module

- Electrical simulation & measurements: significant improvements in package parasitics
- □ Full bridge rectifier with 200V/15A Si diodes fabricated and tested

Talk & poster by H. Lee

 I-V characteristic curve of diode

 1.5

 1.2

 ---bare die

 -packaged die

 0.9

 0.6

 0.3

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

 -2.0

 0.0

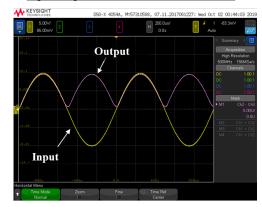
 -2.0

 0.0

 -2.0

 0.0

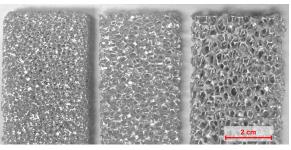
 0.0

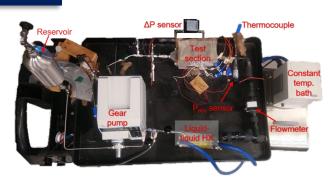

 0.0

 0.0

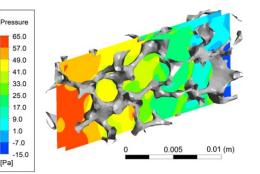
 0.0

 0.0


Input/output waveforms of FBR module


Resistive load (78 $k\Omega)$ at the output of rectifier

Advanced Cold Plates


- Dual computationalexperimental approach
- Performance comparison between traditional vs. AM foams

Prof. Y. Joshi, poster by J. Broughton

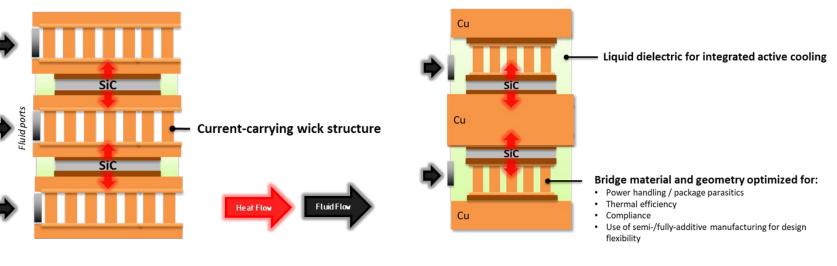
Georgia Institute of Technology

Nov. 7-8, 2019

CENTER

8

Advanced Cold Plates as Current Terminals


PRC Confidential

Increasing Functional & Power Density: Integrated Cooling

In collaboration with Prof. Y. Joshi & Prof. A. Antoniou, Bosch Poster by R. Wong

- Key concept: bring cooling closer to the heat sources (devices, high current terminals)
- □ Create hybrid electrical / thermal structures
 - Multiphysics, multiscale modeling
 - Machine-learning assisted design optimization
- Material innovations: use 3D interconnected Graphene (GP) foams to create low-CTE / highconductivity Cu-GP composites

Plasma surface modification E-deposit Cu Molten Cu dir GP/Cu composite

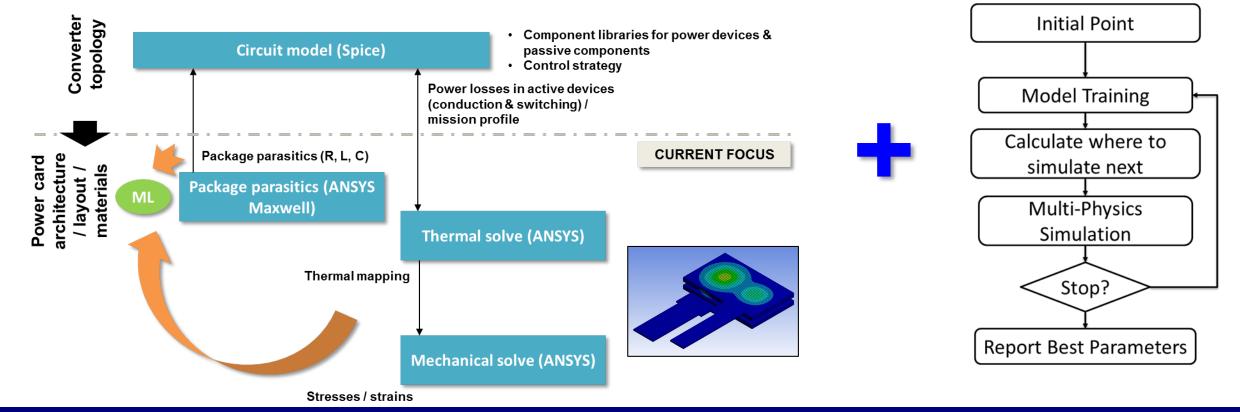
GP on macro/nano Ni/Cu foam

GP foam

Direct Chip Cooling with Liquid Dielectric

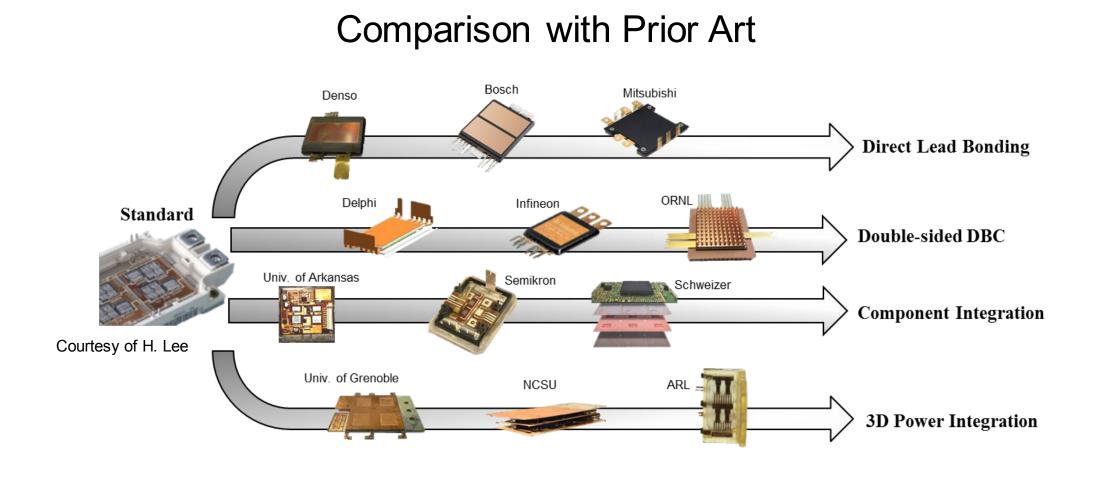
PRC Confidential

Shaping the Landscape of Future WBG-Based Power Electronics


- □ Combine machine / active learning and multiphysics analysis to optimize, and ultimately generate new, **non-intuitive** SiC-based inverter package architectures
- □ Build and characterize prototypes based on ML-assisted design

Multiphysics Modeling Environment

In collaboration with Prof. M. Swaminathan, Toyota Talk & poster by H. Torun & R. Wong



Bayesian Active Learning

Georgia Institute of Technology

PRC Confidential

□ Combined benefits from 3D integration, heterogeneous integration & functional integration

- □ Focus on manufacturability & compatibility with industry-standard processes
- □ Inclusion of machine learning for multi-objective power module optimization
- □ Unique potential to go from co-design to prototyping and testing with focused GT team

Summary

□ Research program is growing with an ecosystem of expert faculties coming together

- Addressing the transition to SiC from many angles to identify key integration strategies and package architectures, particularly for EVs
- Work is ongoing in parallel with Prof. S.C. Shen on vertical GaN devices (goal is to develop a GaN IGBT) as next roadmap
- Aiming at growing our prototyping and testing capability with more supply chain involvement