

Design & Demonstration of 3D Stacked Rectifier Module

Faculty: Dr. Vanessa Smet Prof. Rao Tummala

1

Industry: Nobuo Ogura (Nagase)

Students: Haksun Lee

PRC Confidential

Outline

- □ Goals & Objectives
- Prior Work
- Technical Approach
- Results & Key Accomplishments
- **Comparison with Prior Art**
- □ Schedule
- **G** Summary

Goals and Objectives

• Design, demonstrate and characterize a new class of ultra-low parasitics, 3D SiC power modules with high efficiency, high dv/dt capability, and enhanced thermal management and thermomechanical reliability

	Parameter	Target	Prior Art	Challenges	Research Tasks		
Electrical	Parasitic inductance	-20% reduction *	$5.0 \sim 52 \text{ [nH]}$				
	Parasitic capacitance	-100% reduction *	75 ~ 140 [pF]	1. Trade-offs in multi-physics design	1. 3D package design - Low-parasitics L and C - Low-thermal resistance		
Thermal	Thermal resistance	-20% reduction *	0.1 ~ 1.1 [°C/W]	 High-speed switching High thermal density High-temp. operation 2. Vertical conduction methods	 Enhanced reliability 2. Fabrication & Assembly of lead-frame based compact 3D module Materials and process design Simple stacking process 3. Characterization of 3D module Electrical (L. C. waveforms) 		
Thermomechanical	High temperature storage (200°C)	1000 hr	1000 hr	 Bulky fixtures Complex process (ex. via drilling) Limited conductor thickness 			
	Thermal cycling (-40°C/+125°C)	N _f > 1000	$N_{f} < 1000$	3. Characterization of 3D module			
	Temperature-Humidity (85ºC/85% RH)	1000 hr	1000 hr	L(<nh) and="" c(<pf)<="" td=""><td>- Thermal resistance - Reliability performance</td></nh)>	- Thermal resistance - Reliability performance		

* Compared to a reference design

Prior Work

Thermomechanical Analysis and Comparison

Wire bond module 1.2E+09 2.50E+0 2.30E+08 1.0E+09 2.10E+08 1.90E+08 Pa] 8.0E+08 1.70E+08 6.0E+08 1.50E+08 1 30E+08 4.0E+08 1.10E+08 9.00E+07 2.0F+08 7.00E+07 5.00E+07 0.0E+00

<u>3D module</u>

Uniform Temperature Elevation @ 105°C (Temperature Cycling Precursor)

		Wire bond module 5mm	3D module 0.2mm	
Die	Maximum Von-Mises Stress [MPa]	186	289 (+55.4% increase)	
Die Attech	Maximum Von-Mises Stress [MPa]	es Stress [MPa] 43.7 40	40.9(-6.4% decrease)	
Die Attach	Maximum Plastic Strain	2.96e-2	1.75e-2(-40.8% decrease)	

Super Imposed Temperature Distribution @ 100W per die (Power Cycling Precursor)

		Wire bond module 5mm	3D module 200um
Die	Maximum Von-Mises Stress [MPa]	160.4	124.6 (-22.1% decrease)
Die Attech	Maximum Von-Mises Stress [MPa]	44.4	28.3 (-36.3% decrease)
Die Attach	Maximum Plastic Strain	1.95e-2	-2 0.47e-2 (-75.9% decrease)

Unit Process Development & Fabrication

3D stacking process

Molding process

PRC Confidential

Georgia Tech

Module cross-section with Si dummy dies

- Uniform temperature elevation show decrease in stress & strain of die-attach, increase in die stress (still lower than the safe limit)
- Superimposed temperature distribution shows overall decrease in stress & strain of die and die-attach indicating superior reliability performance in actual operation
- Unit processes were developed for the fabrication and assembly of 3D stacked power module

Nov. 7-8, 2019

PRC Confidential

PRC Confidential

Results & Key Accomplishments

Test vehicles with conducting/non-conducting blocks

(non-conducting) cavity (conducting) Non-conducting Conducting blocks blocks for parasitic C for parasitic L

HP 4285A Precision LCR Meter (75kHz-30MHz)

Thermal measurement Set-up

Thermocouple DUT

Keithley 2400 source meter

	Simulation	Measurement
Thermal resistance Junction to Ambient [°C/W]	20.0	19.5

- Test vehicles with conducting/non-conducting blocks, to replace the diodes (non-linear device parasitics)
- <4% difference between simulation and measurements in all the inductance values
- ~30% difference in $C_{AG} C_{BG}$, but still the values are very small (fringe fields), 4~9% difference in C_{CG} and C_{DG} affected by copper foil lamination process
- Using the junction temperature rise measurement, the junction-to-ambient thermal resistance was calculated

PRC Confidential

Georgia Tech

Results & Key Accomplishments

Input/output waveforms of FBR module

- The I-V characteristic curves of the diode were measured before and after packaging
- Measurements show identical I-V curve characteristics, indicating the 3D stacking process and the 3D package did not change or affect the regular operation of the diodes
- Input/output measurements show the 3D module is functioning well as a rectifier, indicating all four diodes are packaged correctly without any open/short failures

7

PRC Confidential

Georgia Tech

Results and Key Accomplishments

Stitched images of overall module cross-section

PRC Confidential

- 1. Package parasitic inductance -40% compared to the reference design
- 2. Package parasitic capacitance C_{AG} & C_{BG} ~100X smaller compared to the reference design
- 3. Package thermal resistance **5X** smaller compared to the reference design
- 4. Manufacturing process compatible with current tools, infrastructures and processes

Georgia Institute of Technology

PRC Confidential

Schedule

		2019	2020			2021			
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
progress	Electrical design – noise modeling								
progress	Thermal design and optimization								
progress	Mechanical design and optimization								
progress	half-bridge module-fabrication								
progress	Electrical, thermal, reliability characteriztion								
	Electrical design –symmetric layout								
	Thermal design and optimization								
	Mechanical design and optimization								
	Current switch module-fabrication								
	Electrical, thermal, reliability characteriztion								
				H	Electrica	l Design			
	Light blue: SiC half-bridge power mo Dark blue: SiC current switch modul Light Yellow: Current time window]	Гhermal	Design			
				N	Mechani	cal Desig	n		

Fabrication & Assembly

Electrical, thermal, reliability Characterization

Georgia Institute of Technology

Summary

Designed and demonstrated a full bridge rectifier power card using the proposed novel 3D stacked power modules with:

- 1. Package parasitic inductance -40% compared to the reference design
- 2. Package parasitic capacitance C_{AG} & C_{BG} ~100X smaller compared to the reference design
- 3. Package thermal resistance 5X smaller compared to the reference design
- 4. Manufacturing process compatible with current tools, infrastructures and processes

Remaining work for SiC half-bridge module and current switch module

- Detailed noise modeling with studies on the impact of 3D package designs
- Thermal and reliability modeling
- Fabrication and assembly with an emphasis on gate terminal wiring
- Switching performance characterization through double-pulse testing
- Reliability assessment including testing in harsh environments