

Machine Learning for 100kW SiC In-Wheel Inverter Package Design: Project Introduction

Faculties: Dr. Vanessa Smet Prof. Madhavan Swaminathan Industry: Toyota: Shailesh Joshi Dr. Paul Fanson Dr. Danny Lohan Leo Liu Students: Ryan Wong Hakki M. Torun

Outline

- Goals & Objectives
- Prior Art
- Technical Approach
- Results & Key Accomplishments
- Comparison with Prior Art
- Schedule
- Summary

- Create an automated package design optimization tool combining multi-physics modeling and machine learning (ML) to expedite the design of next-generation SiC-based in-wheel inverters with superior power density and efficiency for improved fuel economy.
- Based on predictions from ML algorithm, build and test new package structures.

PRC Confidential

- Machine learning (ML) and active learning are key to developing disruptive packaging solutions to benefit fully from the performance advantages of SiC:
 - Efficient multi-objective optimization of package architectures (geometry, materials) with over 40 parameters
 - Long-term goal is for the model to self-generate new, non-intuitive architectures

S. W. Yoon et al. "Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles," J. of Micro Mech. and Microeng., 2012.

PRC Confidential

Georgia Tech

CENTER

Examples of Use of Optimization Algorithms

in Power Electronics Packaging

Power Module Stack-Up

Heat Sink Geometry

Layout Optimization Pareto Frontier

T. M. Evans *et al.*, "PowerSynth: A Power Module Layout Generation Tool," *IEEE Transactions on Power Electronics*, 2019. T. Wu, B. Ozpineci, M. Chinthavali, W. Zhiqiang, S. Debnath, and S. Campbell, "Design and optimization of 3D printed air-cooled heat sinks based on genetic algorithms," in *IEEE ITEC*, 2017.

Georgia Institute of Technology

PRC Confidential

Georgia Tech

RESEARCH

CENTER

Comparison of Optimization Methods and their Scope

in (Power) Electronics Packaging

Optimization Methods

Regression Methods	Artificial Neural Networks	M
	Quadratic Response Surface	Ge
	Multiquadric Response Surface	Sir
	Response Surface	
	Taylor Series Approximation	Ge Sir
	Subapproximation Method	
	Least-Squares Fit Method	Art
	Design of Experiments	
	Genetic Algorithms	
	Gradient Search Technique	De Le
u s	Conjugate Gradient Method	
Optimizatio Algorithm	Broyden-Fletcher-Goldfarb-Shanno Algorithm	Fo
	Pattern Search Method	Fo
	Simulated Annealing	
	Subproblem Approximation and First-Order Methods	Clu
	Finite-Difference Gradient Method and Artificial Neural Network	Pa

Limitation of Parameters

Methodology	Input	Output
Genetic Algorithms	6	2
Simulated Annealing	3	2
Genetic Algorithm + Simulated Annealing	3	2
Genetic Algorithm + Artificial Neural Networks	4	3
Design of Experiments	3	1
Design of Experiments + Least-Squares Fit Method	4	2
Force-Directed Algorithm	3	3
Force-Directed Algorithm + Fuzzy Logic	4	2
Cluster Growth Algorithm	3	3
Partition-Drive Algorithm	3	2

H. Hadim and T. Suwa, "Multidisciplinary Design and Optimization Methodologies in Electronics Packaging: State-of-the-Art Review," Journal of Electronic Packaging, 2008.

Coulibaly, "METHODIC: a new CAD for electrothermal coupling simulation in power converters," in IECON '98.

J. Z. Chen, Y. Wu, C. Gence, D. Boroyevich, and J. H. Bohn, "Integrated electrical and thermal analysis of integrated power electronics modules using iSIGHT," in APEC 2001

G. Xiong, M. Lu, C. Chen, B. P. Wang, and D. Kehl, "Numerical optimization of a power electronics cooling assembly," in APEC 2001

S. Sridhar and H. J. Eggink, "Dealing with uncertainty in power loss estimates in thermal design of power electronic circuits," in Conference Record of the 1999 IEEE Industry Applications Conference.

D. Gopinath, Y. Joshi, and S. Azarm, "An integrated methodology for multiobjective optimal component placement and heat sink sizing," IEEE Transactions on Components and Packaging Technologies, 2005.

D. Gopinath, Y. K. Joshi, and S. Azarm, "Multi-objective placement optimization of power electronic devices on liquid cooled heat sinks," in Annual IEEE Semiconductor Thermal Measurement and Management, 2001.

PRC Confidential

- Power module optimization framework requires Design, Technology and Package Co-Optimization.
 - The best converter topology and package architecture combination, along with best design and material parameters.
- System is broken down to smallest possible building block at both circuit & package level.
- Key: Use Bayesian Active Learning (BAL) to determine the optimal combination of building blocks.
 - Along with quantifying the effect of choices on various performance metrics.

PRC Confidential **PRC IAB Meeting** Comparison of Bayesian ML with existing approach Georgia Tech **Bayesian Active Learning** Traditional ML Model Building **Initial Point Initial Point** Multi-physics Model Training simulation Calculate where to Model Training simulate next **Multi-Physics** Optimization on Model Simulation Stop? Report Best Parameters **Report Best Parameters**

- Conventional approach to ML is to first collect data, then train the model.
 - Design of experiments methods (such as Latin Hypercube Sampling) are used to create the data.
- Active Learning (AL) is a sequential method that selects "what parameters" to be simulated
- AL techniques automatically create training data (starting from 0 data).
 - Allows for building better quality models with less simulations!
- Can be used for <u>optimization</u> and <u>model building</u>.

Georgia Tech

Overall Steps for ML

PRC Confidential

Lexus LS 600h Power Module (DENSO)

Multi-physics environment built in Ansys – for thermal solve:

- Fully parameterized 3D model with simplified geometry
- Steady-state analysis as worst case thermal scenario
- Heat generated at switch and diode
- Double-sided liquid cooling represented as heat transfer coefficient
- Variations in thickness for initial thermal solve

Half-Bridge Configuration

Compact Geometry

Georgia Institute of Technology

Nov. 7-8, 2019

Initial Problem Definition: Thermal performance for DENSO Package

<u>10 parameters</u> define the geometry of the module (Z-direction)

Parameter	Material	Unit	Min	Max
Diode/Switch Spacer Thickness	Cu	mm	0.20	3.00
Collector Plate Thickness	Cu	mm	0.05	3.00
Emitter Plate Thickness	Cu	mm	0.05	3.00
Collector Insulator Thickness	Dielectric Thin Film	mm	0.25	1.00
Emitter Insulator Thickness	Dielectric Thin Film	mm	0.25	1.00
All Joint Thicknesses (5 separate params.)	Solder	mm	0.05	0.10

Devices

Package

Parameters				
lunction Tomporature	Maximum Temperature (T _{j, max})			
Junction remperature	Change in Temperature (ΔT_j)			
Operational Temperature for Layers	Dielectric Temperature (T _d) Joint Temperature (T _{jt})			

Objective:

- 1. Find thickness that minimizes T_{imax}
- 2. Perform sensitivity analysis to determine which parameter(s) has more effect.

PRC Confidential Georgia Tech

Georgia Institute of Technology

Nov. 7-8, 2019

PRC Confidential

- Bayesian Optimization can find minimum temperature but can't build an accurate model.
 - Need the model for sensitivity analysis.
- Is there a way to optimize AND build accurate model at the same time?
- Alternate between <u>optimization</u> and <u>model building</u> at every iteration.
 - Better Model \rightarrow Avoid Local Optima \rightarrow Faster Optimization
 - **Optimization** \rightarrow Learn Saddle Points \rightarrow Higher Model Quality

Complementary Objectives

```
Nov. 7-8, 2019
```

Results: Model Accuracy

Max. junction temperature with original DENSO package dimensions: **57.4°C**

	LHS	BALDO
Norm. Mean Squared Err.	7.76%	4.94%
Max. Junction Temperature	54.0°C	52.9°C
Av. Absolute Error	0.897°C	0.687°C
Max. Width of Confidence Interval	1.976°C	1.703°C

- Performance of models using data collected by BALDO and Latin Hypercube sampling is collected.
- For both methods, 50 samples are used for training and 100 for testing.
- Performance gain through BALDO is expected to be more when the nonlinearity increases.
 - Ex: multi-physics environment.

PRC Confidential

Georgia Tech

Results: Sensitivity Analysis

- Sensitivity analysis is obtained as a by-product (free!) of active learning.
- As the data is scarce, confidence bounds over parameter weights are necessary.
 - Bayesian training of the GP allows to do so.
- As more data is added, confidence bounds shrink.
- <u>Collector Plate thickness and Collector Insulator thickness</u> has the largest impact.

14

Schedule

Next steps: • <u>Machine learning</u>: handling categorical parameters (material choices and their parameters, insulator technology)

• <u>Multi-physics environment</u>: fully parametrized layout (XY plane), mechanical and electrical solves

	2019	2020			2021			
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Parametrization								
Multiphysics Environment								
Initial Pass of Thermal Solve								
Expansion of Thermal Solve								
Thermomechanical Solve								
ML based optim. on continuous params								
Extend to Categorical Parameters								
Material & Geometry Co-Optimization								
Extend to Conditional Parameters								
Package Architecture, Material, Geometry Co-Optimization								

Multi-Physics Simulation Environment ML Model Development

Summary

- Very recently started project.
- BALDO was used for the simplified problem of minimizing max. junction temperature of DENSO structure.
- Critical elements in the DENSO structure were highlighted for the most thermal impact (collector plate).
 - Along with confidence bounds.
- Next step is to extend thermal model to multi-physics model and perform material & geometry co-optimization.
- The ML methodology developed throughout the project will enable us to generate unseen package architectures.

Back-Up Slides

Georgia Institute of Technology

Nov. 7-8, 2019

PRC Confidential

Complexity of Multiphysics Problem Coupling of Models

