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Goals and Objectives

 Create an automated package design optimization tool combining multi-physics modeling
and machine learning (ML) to expedite the design of next-generation SiC-based in-wheel 
inverters with superior power density and efficiency for improved fuel economy.

 Based on predictions from ML algorithm, build and test new package structures.

Metrics Objectives
Size Reduction > 25%
Power Density 100 kW per Wheel

Temperature > 150°C
(Tjmax=250°C)

Carrier Frequency > 10 kHz
B. K. Chakravarthy and G. Sree Lakshmi, "Power Savings with all SiC Inverter in Electric Traction applications," 
E3S Web Conf., vol. 87, pp. 1-14, 2019.
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Architecture of Power Modules
Shaping the Landscape of SiC-Based Power Conversion

Conventional Packaging Advanced Packaging: Power Card
Power Density (↑)       Package Parasitics (↓)       Thermal Performance (↑)       Reliability (↑)       Manufacturability (↑)       Cost (↓)

SiC-Based Power Modules
Si-Based Drive Inverters

Double-Sided 
Cooling

Die-Attach / Substrate 
Technology

… …

Incremental Innovations

ML-Enabled Disruptive 
Innovations

 Machine learning (ML) and active learning are key to developing disruptive packaging 
solutions to benefit fully from the performance advantages of SiC:
 Efficient multi-objective optimization of package architectures (geometry, materials) with over 

40 parameters
 Long-term goal is for the model to self-generate new, non-intuitive architectures

SiC-Based Drive Inverters

S. W. Yoon et al. "Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles," J. of Micro Mech. and Microeng., 2012.

dV/dt

dV/dt
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Examples of Use of Optimization Algorithms
in Power Electronics Packaging

Power Module Stack-Up

Heat Sink Geometry

Layout Optimization Pareto Frontier

Optimization Metric
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T. M. Evans et al., "PowerSynth: A Power Module Layout Generation Tool," IEEE Transactions on Power Electronics, 2019.
T. Wu, B. Ozpineci, M. Chinthavali, W. Zhiqiang, S. Debnath, and S. Campbell, "Design and optimization of 3D printed air-cooled heat sinks based on genetic algorithms," in IEEE ITEC, 2017.



Nov. 7-8, 2019

PRC IAB Meeting

6 Georgia Institute of Technology

PRC Confidential

Artificial Neural Networks

Quadratic Response Surface

Multiquadric Response Surface

Response Surface

Taylor Series Approximation

Subapproximation Method

Least-Squares Fit Method

Design of Experiments

Genetic Algorithms

Gradient Search Technique

Conjugate Gradient Method

Broyden-Fletcher-Goldfarb-Shanno Algorithm

Pattern Search Method

Simulated Annealing

Subproblem Approximation and First-Order Methods

Finite-Difference Gradient Method and Artificial Neural Network
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Methodology Input Output

Genetic Algorithms 6 2

Simulated Annealing 3 2

Genetic Algorithm + 
Simulated Annealing 3 2

Genetic Algorithm + 
Artificial Neural Networks 4 3

Design of Experiments 3 1

Design of Experiments + 
Least-Squares Fit Method 4 2

Force-Directed Algorithm 3 3

Force-Directed Algorithm +
Fuzzy Logic 4 2

Cluster Growth Algorithm 3 3

Partition-Drive Algorithm 3 2

Optimization Methods Limitation of Parameters

Comparison of Optimization Methods and their Scope 
in (Power) Electronics Packaging

H. Hadim and T. Suwa, "Multidisciplinary Design and Optimization Methodologies in Electronics Packaging: State-of-the-Art Review," Journal of Electronic Packaging, 2008.
Coulibaly, "METHODIC: a new CAD for electrothermal coupling simulation in power converters," in IECON '98. 
J. Z. Chen, Y. Wu, C. Gence, D. Boroyevich, and J. H. Bohn, "Integrated electrical and thermal analysis of integrated power electronics modules using iSIGHT," in APEC 2001
G. Xiong, M. Lu, C. Chen, B. P. Wang, and D. Kehl, "Numerical optimization of a power electronics cooling assembly," in APEC 2001
S. Sridhar and H. J. Eggink, "Dealing with uncertainty in power loss estimates in thermal design of power electronic circuits," in Conference Record of the 1999 IEEE Industry Applications Conference. 
D. Gopinath, Y. Joshi, and S. Azarm, "An integrated methodology for multiobjective optimal component placement and heat sink sizing," IEEE Transactions on Components and Packaging Technologies, 2005.
D. Gopinath, Y. K. Joshi, and S. Azarm, "Multi-objective placement optimization of power electronic devices on liquid cooled heat sinks," in Annual IEEE Semiconductor Thermal Measurement and Management, 2001.
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Machine Learning based Power Module Optimization

 Power module optimization framework requires Design, Technology and Package Co-Optimization.
 The best converter topology and package architecture combination, along with best design and material 

parameters.
 System is broken down to smallest possible building block at both circuit & package level.
 Key: Use Bayesian Active Learning (BAL) to determine the optimal combination of building blocks.

 Along with quantifying the effect of choices on various performance metrics.
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Comparison of Bayesian ML with existing approach

Traditional ML Model Building Bayesian Active Learning

Initial Point

Model Training

Optimization on Model

Report Best Parameters

Multi-physics 
simulation

 Conventional approach to ML is to first collect data, then train the model.
 Design of experiments methods (such as Latin Hypercube Sampling) are used to create the data.

 Active Learning (AL) is a sequential method that selects “what parameters” to be simulated
 AL techniques automatically create training data (starting from 0 data).

 Allows for building better quality models with less simulations!
 Can be used for optimization and model building.
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Overall Steps for ML
Circuit

Package 
Architecture

Cooling

Data Type: Continuous and categorical variables 
Hard switching, soft switching, passives, device technology
Currently fixed as hard switching with IGBT devices (STEP IV)

Geometry
&

Material

Data Type: Continuous and discrete variables
Current focus (STEP I): simplified problem to establish method 
capability  DENSO package, single physics (thermal), 10 
continuous variables (geometry: layer thicknesses)

Data Type: Categorical variables
Wirebond, power card, 3D stacked, … + functional integration

Data Type: Categorical and continuous
Heat pipe, heat sink, cold plate, integrated cooling, …
(Step III – explored in parallel through other Consortium project)
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To Illustrate the Method: DENSO Power Card
Geometry for Multiphysics Modeling

Lexus LS 600h Power Module (DENSO) 

Compact Geometry
Half-Bridge

Configuration

Multi-physics environment built in Ansys – for thermal solve:
 Fully parameterized 3D model with simplified geometry
 Steady-state analysis as worst case thermal scenario
 Heat generated at switch and diode
 Double-sided liquid cooling represented as heat transfer coefficient
 Variations in thickness for initial thermal solve

Heat Generation
100 W / die

Heat Transfer 
Coeff.
1,000 W/m2K
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Initial Problem Definition: 
Thermal performance for DENSO Package
 10 parameters define the geometry of 

the module (Z-direction)

Objective:
1. Find thickness that minimizes Tjmax
2. Perform sensitivity analysis to determine which parameter(s) has more effect.

in minimum 
CPU time

Parameter Material Unit Min Max

Diode/Switch
Spacer Thickness Cu mm 0.20 3.00

Collector Plate Thickness Cu mm 0.05 3.00

Emitter Plate Thickness Cu mm 0.05 3.00

Collector Insulator 
Thickness

Dielectric
Thin Film mm 0.25 1.00

Emitter Insulator Thickness Dielectric
Thin Film mm 0.25 1.00

All Joint Thicknesses
(5 separate params.) Solder mm 0.05 0.10

Parameters

Junction Temperature
Maximum Temperature (Tj, max)

Change in Temperature (ΔTj)

Operational Temperature 
for Layers

Dielectric Temperature (Td)
Joint Temperature  (Tjt)

Devices Package
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Bayesian Active Learning using Dropout (BALDO)

 Bayesian Optimization can find minimum temperature but can’t build an accurate model.
 Need the model for sensitivity analysis.

 Is there a way to optimize AND build accurate model at the same time?
 Alternate between optimization and model building at every iteration.

 Better Model  Avoid Local Optima  Faster Optimization
 Optimization  Learn Saddle Points  Higher Model Quality

Complementary
Objectives

H. M. Torun et al, EPEPS’18
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Results: Model Accuracy

LHS BALDO
Norm. Mean Squared Err. 7.76% 4.94%
Max. Junction Temperature 54.0°C 52.9°C
Av. Absolute Error 0.897°C 0.687°C
Max. Width of 
Confidence Interval 1.976°C 1.703°C

 Performance of models using data 
collected by BALDO and Latin 
Hypercube sampling is collected.

 For both methods, 50 samples are used 
for training and 100 for testing.

 Performance gain through BALDO is 
expected to be more when the non-
linearity increases.
 Ex: multi-physics environment.
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ANSYS Simulations

BALDO

LHS

Max. junction temperature with original 
DENSO package dimensions: 57.4°C
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Results: Sensitivity Analysis
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MORE
DATA

 Sensitivity analysis is obtained as a by-product (free!) of active learning.
 As the data is scarce, confidence bounds over parameter weights are necessary.

 Bayesian training of the GP allows to do so.
 As more data is added, confidence bounds shrink.
 Collector Plate thickness and Collector Insulator thickness has the largest impact.



Nov. 7-8, 2019

PRC IAB Meeting

15 Georgia Institute of Technology

PRC Confidential

Schedule

2019 2020 2021
Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

Parametrization
Multiphysics Environment
Initial Pass of Thermal Solve
Expansion of Thermal Solve
Thermomechanical Solve
ML based optim. on continuous params
Extend to Categorical Parameters
Material & Geometry Co-Optimization
Extend to Conditional Parameters 
Package Architecture, Material, 
Geometry Co-Optimization

Multi-Physics Simulation Environment
ML Model Development

Next steps:  • Machine learning: handling categorical parameters (material 
choices and their parameters, insulator technology)

• Multi-physics environment: fully parametrized layout (XY plane), 
mechanical and electrical solves
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Summary

 Very recently started project.

 BALDO was used for the simplified problem of minimizing max. 
junction temperature of DENSO structure.

 Critical elements in the DENSO structure were highlighted for the 
most thermal impact (collector plate).
 Along with confidence bounds.

 Next step is to extend thermal model to multi-physics model and 
perform material & geometry co-optimization.

 The ML methodology developed throughout the project will enable 
us to generate unseen package architectures.



Nov. 7-8, 2019

PRC IAB Meeting

17 Georgia Institute of Technology

PRC Confidential



Nov. 7-8, 2019

PRC IAB Meeting

18 Georgia Institute of Technology

PRC Confidential

Back-Up Slides



Nov. 7-8, 2019

PRC IAB Meeting

19 Georgia Institute of Technology

PRC Confidential

Circuit model (Spice)

Package Parasitics (ANSYS 
Maxwell)

Thermal Solve (ANSYS)

Mechanical Solve (ANSYS)

• Component libraries for power devices & 
passive components

• Control strategy  
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ML

Complexity of Multiphysics Problem
Coupling of Models

Device Thermal Mapping


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Comparison of Bayesian ML with existing approach
	Overall Steps for ML
	Slide Number 10
	Initial Problem Definition: �Thermal performance for DENSO Package
	Slide Number 12
	Results: Model Accuracy
	Results: Sensitivity Analysis
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Back-Up Slides
	Slide Number 19

