

Analysis of Maximum Voltage Droops In Power Delivery Network

Students : Seunghyup Han Faculty : Prof. Madhavan Swaminathan

Industry Advisory Board (IAB) November 2019

Georgia Tech 1. Objectives

- Identify voltage droops in an efficient way
- The ways to effectively analyze and clarify the causes of voltage droops
- Estimate voltage droops from a step current considering its rise time
- Estimate voltage droops from a step current when multiple impedance peaks

existed

Voltage noise waveform and associated worst-case voltage margin. [Courtesy : P. N. Whatmoughet al, 2015]

Industry Advisory Board (IAB) November 2019

PRC Confidential

2.1 Simplified Equations to Predict Maximum Voltage Droops

Georgia

Tech

2. Prior Work

[Typical PDN model of the high-performance computing system consisting of PCB, package, and ICs]

Simplified PDN circuit based on the assumption [Modified from L.Smith et al, 2018]

Simplified equations to predict voltage droops [L.Smith et al, 2018]

PRC Confidential

Georgia 2. Prior Work 2.2 Rigorous Solutions & Error Analysis

Voltage droops from an impulse current

 $\left(1 - \frac{1}{Q^2} \frac{R_1 R_2}{(R_1 + R_2)^2}\right)^2$ $-\cdot\cos\left(2\pi f_0\cdot\sqrt{1-\frac{1}{4Q^2}\cdot t-\varphi}\right)$ $\boldsymbol{v}(t)_{impulse} = \boldsymbol{R}_2 \cdot \delta(0) + \frac{1}{C} \cdot e^{-(\frac{2\pi f_0}{2\boldsymbol{Q}}) \cdot t}$ Ratio of R² (R²=Z⁰·Y) of R2 (R2=Z Error rate (%) a = 1 Area with The Error Rate under 10 The Error Rate under Ratio q = 3 a + 5 q = 5 Ratio of R Ratio of Time (Tresonance:Tclk=X:1) (Tresonance: Tpulse=X:1) Ratio_of T (Tresonance:Tpulse=X:1)

[Error rates in calculated voltage droops from a rectangular shaped impulse current depending on the ratio of resonance period to pulse time duration, and the ratio of R2 resistance with respect to Z0]

Industry Advisory Board (IAB) November 2019

Georgia 2. Prior Work 2.2 Rigorous Solutions & Error Analysis

[Error rates in the calculated voltage droops from a resonant current depending Q and the ratio of R1 to R2.]

- Sufficient Condition for the reliable voltage droop results
 - The equation for voltage response to a step current
 - : Q needs to be higher than 3
 - : If Q is less than 2, the ratio resistance needs to be considered
 - The equation for voltage response to an impulse current
 - : Pulse time duration and R₂ need to be closed to zero
 - : Pulse time duration needs to be at least 7:1
 - The equation for voltage response to a resonant current
 - : Q needs to be higher than 2

3. Voltage Droop Estimation including Rise Time

3.1 Step Current with Rise Time

Voltage droops from a step current with different rise times

- : When rise time is short such as less than 2ns, the maximum voltage droops are almost same.
- : On the other hand, when rise time is long, the level of voltage droop decreases significantly.

Georgia

Tech

Georgia Tech

3.2 Simplified Equation & Error Analysis

Fourier series expansion of trapezoidal current wave form

$$: i(t) = \frac{I_0 T_w}{T} \left(1 + 2 \sum_{n=1}^{\infty} \cdot \frac{\sin\left(\frac{n\pi T_w}{T}\right)}{\frac{n\pi T_w}{T}} \cdot \frac{\sin\left(\frac{n\pi \tau}{T}\right)}{\frac{n\pi \tau}{T}} \cdot \cos\left(\frac{2\pi n}{T}\right) t \right)$$

:
$$Envelope(dB) = 2 \frac{I_0 T_w}{T} \left| \frac{\sin(\pi T_w f)}{\pi T_w f} \right| \left| \frac{\sin(\pi \tau f)}{\pi \tau f} \right|$$

: Previously, we consider Z₀(characteristic impedance) at f_r(resonant frequency) to calculate the voltage droop from an ideal step current.

: The reduced magnitude of current harmonics needs to be applied for the voltage droop estimation.

Georgia Tech

3. Voltage Droop Estimation including Rise Time Georgia Tech

3.2 Simplified Equation & Error Analysis

Simplified equation to predict voltage droops

$$V_{step} = \frac{1}{\pi \tau f_r} \cdot Z_0 \cdot I_{step}$$
$$= \frac{1}{\pi \tau \cdot \frac{1}{2\pi \sqrt{LC}}} \cdot \sqrt{\frac{L}{C}} \cdot I_{step}$$
$$= \frac{2L}{\tau} \cdot I_{step} \quad (when f_r > \frac{1}{\pi \tau})$$

Sufficient condition for equation's results

- : Original equation can be used when Q > 8 and $\tau < 0.1 \cdot T_0$
- : New equation can be used when Q > 8 and $0.4 \cdot T_0 < \tau < 1.2 \cdot T_0$

- Goal
- : Determine Max. Vol. droops from a step current with multiple peaks in impedance profile.

Variables required in impedance profile : Z_{peak}, w₀, Q of each peak

Industry Advisory Board (IAB) November 2019

- 4.1 Ideal Step Current Response
- Applying the equation with the variables from each peak

$$v(t)_{step} = \frac{N}{N+1} R_{total} - Z_0 \cdot e^{-\left(\frac{w_0}{2Q}\right) \cdot t} \cdot \sqrt{\frac{\left(Q - \frac{1}{Q} \frac{N}{(N+1)^2}\right)^2}{Q^2 - \frac{1}{4}} \cdot \cos(w_0 \cdot \sqrt{1 - \frac{1}{4Q^2}} t - \varphi)}{\varphi = \tan^{-1} \frac{1}{2} + \frac{N^2}{(N+1)(1-N)} - Q^2 \frac{(1+N)}{(1-N)}}{\sqrt{Q^2 - \frac{1}{4}}}$$

<u>Set N₁, N₂, N₃ = 1 ~ 10</u>

• Results

Industry Advisory Board (IAB) November 2019

Georgia Institute of Technology

Georgia Tech

Industry Advisory Board (IAB) November 2019

Georgia Tech 4. Voltage Droop Estimation (Multiple Imp. Peaks) Georgia Tech 4.2 Step Current with Rise Time Response **Results** • **Rising time 500ps** Max. V : 57.49mV [ADS] [This work] Max. V : 54.17 - 61.87mV → Error : -5.77% ~ 7.62% 0.0 -0.0 Peak Droop **Settling Time** 0.5 **Rising time 1ns** ٠ Max. V : 52.14mV [ADS] [This work] Max. V : 50.11 - 58.02mV → Error : -3.98% ~ 11.28% 0.02 -0.0 Peak Droop **Settling Time**

Industry Advisory Board (IAB) November 2019

Georgia 5. Summary & Timeline

- Using the simplified equation, we can expect max. voltage droop from a step current with rise time.
- Utilizing the equation, we can estimate the voltage response waveform when

multiple peaks existed.

Timeline

	19 4Q	19 1Q	19 2Q	19 3Q	19 3Q
Check Feasibility of ML usage with 1peak impedance					
Estimation of Vol. Multiple peaks impedance using ML					
Estimation of Vol. from arbitrary current using ML					