

Impedance Response Extrapolation of PDNs using Recurrent Neural Networks

Students: Osama Waqar Bhatti, Hakki Mert Torun Faculty: Madhavan Swaminathan

Industry Advisory Board (IAB) November 2019

Georgia Acknowledgements

This research is supported in part by NSF/IUCRC Center for Advanced Electronics Through Machine Learning (CAEML)

Liaisons: Jose Hejase (IBM) Dale Becker (IBM)

ANSYS SIwave-DC for Power Integrity Analysis

• Tracking impedance response is crucial to the design of a power delivery network

1. Objective

- Extrapolation in frequency means to accurately predict the response beyond the simulated frequency range
- Designers carry out simulations to determine if response is lower than target impedance
- Our goal: Can a surrogate model be used to predict a response outside the range of training data? That saves <u>memory and computation time</u>

Georgia

lec

Industry Advisory Board (IAB) November 2019

Georgia Tech
PACKAGING
RESEARCH CENTER

eters	Min value	Max Value		
σ_{Si}	1 × 10 ⁷ S/m	$1 \times 10^7 S/m$		
t _{metal}	0. <mark>5µm</mark>	1μ m		
W _{grid}	10µm	30µm		
Wgrid	100µm	300 µm		
r _{TSV}	5 µm	25 µm		
p _{tsv}	15 µm	75 μm		
r _{C4}	50µm	250 μ m		
p _{C4}	150 μ <mark>m</mark>	750 μm		
h _{imd}	0. <mark>7µm</mark>	1 μm		
r_{μ}	10μ <i>m</i>	<mark>2</mark> 0μm		
ϵ_{si}	11.9	9 <i>e</i> _o		
ϵ_{poly}	3.9	9 <i>e</i> _o		
	eters σ_{Si} t_{metal} W_{grid} W_{grid} r_{TSV} p_{TSV} r_{C4} p_{C4} h_{imd} r_{μ} ϵ_{si} ϵ_{poly}	etersMin value σ_{Si} $1 \times 10^7 S/m$ t_{metal} $0.5 \mu m$ W_{grid} $10 \mu m$ w_{grid} $100 \mu m$ r_{TSV} $5 \mu m$ p_{TSV} $15 \mu m$ p_{C4} $50 \mu m$ p_{C4} $150 \mu m$ h_{imd} $0.7 \mu m$ r_{μ} $10 \mu m$ ϵ_{si} 11.9 ϵ_{poly} 3.9		

Industry Advisory Board (IAB) November 2019

- Interpolation and extrapolation using iterative Hilbert Transform → computationally inefficient
- Frequency response as a sum of damped sinusoids → less frequency range and simple stackup
- Cauchy method → narrowband responses only

[1] J. M. Frye and A. Q. Martin, "Extrapolation of Time and Frequency Responses of Resonant Antennas Using Damped Sinusoids and Orthogonal Polynomials," in IEEE Transactions on Antennas and Propagation, vol. 56, no. 4, pp. 933-943, April 2008

[2] S. M. Narayana et al., "Interpolation/extrapolation of frequency domain responses using the Hilbert transform," in IEEE Transactionson Microwave Theory and Techniques, vol. 44, no. 10, pp. 1621-1627, Oct. 1996.

[3] R. S. Adve, T. K. Sarkar, S. M. Rao, E. K. Miller and D. R. Pflug, "Application of the Cauchy method for extrapolating/interpolating narrowband system responses," in IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 5, pp. 837-845, May 1997.

Georgia Tech

3. Technical Approach

3.1 Impedance Response of a PDN

- How does one go about extrapolation with band-limited response?
- How do you determine the maximum extrapolation frequency for which the pole and zero trained model is accurate?

Georgia Tech

Vector-fitted pole diagram

Illustrative vector-fitted pole representation of impedance response

Where r_i are the residues p_i are the poles d is the proportional factor

Industry Advisory Board (IAB) November 2019

- Frequency samples are corelated in frequency space
- Information embedded in band-limited space, one can predict out-of-band values
- Recurrent neural networks form connections among inputs at different indices to predict the future sample value
- Hidden states store essential features from data necessary for construction of the next value

Georgia Tech

November 2019

3. Technical Approach

3.3 Network Architecture

5. Results

Georgia

Tech

5.1 Impedance response Extrapolation

- PDN has around 60 poles in the training space
 - MSE = 0.008 ohms squared
 - Together combined with estimated mean and variance of the next batch gives the output impedance
 - Dynamic learning rate employed with batch normalization to avoid overfitting

Physical parame	Values			
Conductivity	σ_{Si}	9.27 * 10 ⁷ S/m		
Metal height	t _{metal}	0.757µm		
Grid width	W _{grid}	27µm		
Grid spacing	W _{grid}	168µm		
TSV radius	r _{TSV}	7.93 µm		
C4 bump radius	<i>r</i> _{C4}	240µm		
Substrate thickness	h _{imd}	0.81µm		

PDN impedance response can be extrapolated using recurrent neural networks with specialized structured nodes called LSTMs

5. Summary

- The output of the network is a function of operating frequency and previous correlated points in frequency space
- Extrapolation in frequency saves time and computational resources in comparison to CAD tool avoiding the explicit simulation in out-of-band frequency range
- This technique is beyond limiting oneself on a certain PDN circuit topology
- As future work, we are working on providing confidence bounds for our prediction

Georgia

Tech

		2019	2020			2021			
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
dono	1 - 500 design samples								
done	collected								
prograss	2 - Frequency response								
progress	Analysis								
	3 - Impedance response								
	extrapolation								
	4 - Confidence bound								
	prediction								
	5 - Generalizing to other								
	variable								
	6- Error bounds on PDN								
	design								
stall	7 – Using Hilbert transform for								
Stall	extrapolation								
	8 – DNN development for								
	geometrical parameters								
					Simi	ulation D	esign		
					Net	work Arc	hitectur	e topolo	777

Georgia Tech 6. Timeline