

Ultra-High Efficiency Substrate-Embedded Inductors for Integrated Voltage Regulators

Students: Srinidhi Suresh, Claudio Alvarez, Venkatesh Avula **Faculty:** Dr. Himani Sharma, Prof. Madhavan Swaminathan, Prof. Rao Tummala

Industry Advisory Board (IAB) November 2019

Georgia Tech

We are grateful for the support from PRC industry consortium, in particular Panasonic Corporation, Japan and Panasonic Industrial Devices Sales Company of America, USA in order to carry out this work

Georgia Tech

Georgia Tech 1. Goals and Objectives

Demonstrate substrate-embedded, high current handling, magnetic core inductor for IVR

	Low-F (1 – 1	requency 10 MHz)	High Fr (100 - 14	equency 40 MHz)				
Metrics	Prior Art	Objectives	Prior Art	Objectives	Challenges	Tasks		
Inductance (nH/mm ²)	1.7	10-20	3.2	6	Material Challenge Trade-off between high	Model and design magnetic-core inductors		
DC resistance (mΩ)	4.9	5	36	<10	permeability and frequency stability	with target specifications Develop new process to fabricate and characterize substrate-integrated		
Current handling (A/mm ²)	1	2	1	2	Inductor Challenge Inductor design for high inductance & current handling			
Thickness (mm)	2	0.5	0.7	0.2 – 0.3	with low DC resistance	inductors Develop innovative process to embed LC into substrates		
Туре	Discrete	Integrated	Discrete	Integrated	Integration Challenge Lack of embedding process to embed LC into substrate			

3. Unique Approach

Innovative Inductor Designs

Unique inductor designs (2 geometrical options):

Spiral inductors (2D)

Georgia

Tech

Solenoid inductors (3D)

Advanced Integration Process

- Wafer-level substrate-compatible process to integrate inductor into substrates
- Reliability testing Thermal cycling and warpage

Advanced Materials

Magnetic composites for high inductance density

- High permeability
- Trade-off high current handling and DC resistance

4. Characterization of Composite Material

10000000

Frequency (MHz)

1E+09

PRC Confidential

4.1 Electrical Properties

Georgia

Tech

Parameter	Low frequency	High frequency		
Permeability (H/m)	150 at 10 MHz	25 at 140 MHz		
Loss tangent	0.146	0.230		

Required material properties for 96% efficiency:

- The permeability is somewhere in between 50 and 150
- Loss tangent must be less than 0.033
- Magnetic saturation field must be greater than 0.6 Tesla

Georgia Tech

4. Characterization of Composite Material

4.2 Mechanical Properties

1. E-less Copper adhesion to composites

Georgia

Tech

Magnetic surface

Industry Advisory Board (IAB)

November 2019

Local Roughness

- E-less copper cannot be directly deposited on composite.
- E-less depends on Palladium catalysts being anchored in rough surfaces.
- Magnetic composites get roughened during and magnetic particles fall off the sheet.
- A dielectric layer is needed between magnetic and copper seed layer.

2. Polymer adhesion to composites

Film	Adhesion strength (g/cm)					
ABF GX 92	976 (avg of all values)					

Metrics	Objectives	Designed per for mance						
		Spiral Inductor	Solenoid Inductor	Toroid Inductor				
Inductance Density	10-20 nH/mm ²	10.05 nH/mm ²	11 nH/mm ²	50 nH/mm ³				
DC Resistance	5 mΩ	10 mΩ	11 mΩ	10 mΩ				
Thickness	500 μm	505 μm	600 μm	500 μm				

- 3D inductor architectures show lower L/R ratio but have a higher current handling
- Such topologies have more design complexity compared to planar inductors

5. Modeling of Inductor Topologies

5.2 High-Frequency Composite

Metrics	Objectives	Designed performance							
	Objectives	Meander	Spiral	Spiral	Strip line	Solenoid	Toroid		
Inductance Density (nH/mm ²)	6	7.04	6.89	7.75	7.27	7.92	13.6 nH/mm ³		
DC Resistance (mΩ)	<10	9.79	8.91	5.34	4.74	6.14	5.5		
Thickness (μm)	220-300	260	260	260	260	280	300		

- The strip line inductor shows higher inductance with a low DC resistance. The designs account for tolerance due to fabrication
- At fs > 10 MHz only low voltage converters can be modeled. Then this material cannot be used for 48V to 1V, only for application 3.3V to 1V and 1.7V to 1V. With the high-frequency material (due to lower permeability) the saturation current is greater than 3.0 A

Georgia

Tech

PRC Confidential

Georgia Tech 6. Inductor Fabrication

6.1 Spiral (2D) Inductors

Industry Advisory Board (IAB) November 2019

6. Inductor Fabrication

6.2 Solenoid (3D) Inductors

Georgia Tech

Industry Advisory Board (IAB) November 2019

Georgia Tech

PRC Confidential

Georgia Tech

Georgia Tech

November 2019

6. Inductor Fabrication

6.3 Toroid (3D) Inductors

Georgia Institute of Technology

12

Georgia 7. Schedule Tec

November 2019

- Toroidal single inductor is already designed
- **Optimization of fabrication process ongoing**
- A single inductor based 4-phase buck converter is in design step
- A Journal paper will be prepared with the analysis results to date
- Next step will be preparing a measurement setup to measure the inductor under DC current bias and with triangular current waveform
- Next iteration will be the design of a tapped inductor-based converter

		2019		2020			2021		
		Q3	Q 4	Q1	Q2	Q3	Q4	Q1	Q2
done	3 – 3D Inductor Design								
progress	3 – 3D Inductor Fabrication								
progress	4 – Inductor Process Optimization								
	5 – IVR Dielet Process Dev./Opt.								
	6 – IVR Dielet Layout								
progress	7 – Power Stage Design								
progress	8 – Power Stage Model								
	10 – PWM and Test Vehicle Layout								
	11 – IVR and Board Manufacture								
	12 – Measurements								
	13 – Meas. To Design Correlation								
	Light blue: Inductor design Dark blue: System design Light Yellow: Current time window					2 nd Ite Ele Pac Int	ration ctrical Des kaging De ernship pe	sign esign eriod	
ndustry Adv	lustry Advisory Board (IAB) Vember 2019 Georgia Institute of Technology								

- Modeled and designed spiral inductors for target specifications as below.
 - Low Frequency: L 10 nH/mm², R 5 mΩ, thickness 0.5 mm
 - High Frequency: L 6 nH/mm², R < 10 mΩ, thickness 0.3 mm</p>
- Developed and optimized process flow for fabricating substrate integrated inductors.
- Fabricated and characterized planar inductors for low and high frequency applications:
 - Low-Frequency: L 12.38 nH/mm², R 9.83 mΩ
 - High-Frequency: L 8.21 nH/mm², R 7.72 mΩ
- Fabricated solenoid inductors for low and high-frequency applications
- Modeled novel toroid inductors and currently optimizing the fabrication process

Next Milestones:

- Fabricate toroid inductors and measure the inductance
- Establish effect of undercut on the inductance density
- Lower losses with high L/R_{dc} with filled vias

8. Summary

Model and fabricate inductors for 48V-1V applications using very low loss materials

Georgia