

Design & Demonstration of 3D Stacked Rectifier Module

Faculty: Dr. Vanessa Smet Prof. Rao Tummala

Industry: Nobuo Ogura (Nagase)

Students: Haksun Lee

Industry Advisory Board (IAB) November 2019

PRC Confidential

Georgia Tech Acknowledgements

This work has been supported by PRC Industry Consortium

Georgia 1. Strategic Need

Design, demonstrate and characterize a new class of ultra-low parasitics, 3D SiC power modules with high efficiency, high dv/dt capability, and enhanced thermal management and thermomechanical reliability

	Parameter	Target	Prior Art	Challenges	Research Tasks		
cal	Parasitic inductance	-20% reduction *	5.0 ~ 52 [nH]		 1. 3D package design Low-parasitics L and C Low-thermal resistance Enhanced reliability 2. Fabrication & Assembly of lead-frame based compact 3D 		
Electric	Parasitic capacitance	-100% reduction *	75 ~ 140 [pF]	1. Trade-offs in mu <mark>lti-physics</mark> design			
Thermal	Thermal resistance	-20% reduction *	0.1 ~ 1.1 [°C/W]	 High-speed switching High thermal density High-temp. operation 2. Vertical conduction methods			
Thermomechanical	High temperature storage (200°C)	1000 hr	1000 hr	 Bulky fixtures Complex process (ex. via drilling) Limited conductor thickness 	module - Materials and process design - Simple stacking process		
	Thermal cycling (-40°C/+125°C)	N _f > 1000	$N_f \le 1000$	3. Characterization of 3D module	 3. Characterization of 3D module - Electrical (L, C, waveforms) - Thermal resistance - Reliability performance 		
	Temperature-Humidity (85°C/85% RH)	1000 hr	1000 hr	L(<nh) and="" c(<pf)<="" th=""></nh)>			

* Compared to a reference design

3. Objectives

Georgia

Tech

Industry Advisory Board (IAB) November 2019

•Die size shrinkage from Si to SiC will result in higher thermal densities within the package •More emphasis on heat spreading and cooling is required

- •Single-sided cooling methods generally have relatively high thermal resistances, even with advanced cooling strategies
- •In order to meet future thermal management cost target for EV/HEV, double-sided cooling will be necessary

PRC Confidential

Georgia Tech

- Parasitic inductances from terminal to terminal were extracted using ANSYS Q3D @ 500kHz
- 3D module has about 40% reduced parasitic L, due to removal of wire bonds and vertical stacking

Georgia

Tech

Georgia Tech

8. Electrical Simulation

Simulation of parasitic C

- The dielectric constant and thickness of encapsulation film layer had no significant impact on C_{AG} & C_{BG}
- C_{CG} & C_{DG} increase with increased dielectric constant, while they decrease with increased thickness
- High dielectric constant (e.g. 6~7) with thin encapsulant film (< 100um) is desirable for preferred parasitic configuration

Isolation layer thickness t [µm]

Georgia 9. Thermal Simulation

Conventional module

DBC (Al₂O₃ 600um, Copper 200um) Heat spreader 5mm (copper) h=10,000W/m²K, 293K ambient P=100W per die volume

Lead-frame thickness =200um Encapsulant film 50um, 3 W/mK h=10,000W/m²K, 293K ambient P=100W per die volume

Thickness of encapsulant film [um]

Lead-frame thickness 200um h=10000W/m²K Heat generation = 100W per die volume

	DBC module	3D Module
Thermal resistance (junction-to- case) [°C/W]	0.83	0.14

• Compared to conventional package, the thermal resistance is ~5X smaller in the 3D case

Georgia 10. Fabrication & Assembly

Wet-etched copper plates

After sintering process with spacers

After molding process

Conductive paste

Cu-clad FR-4 (nonconducting) Cu-clad FR-4 + cavity (conducting) Lamination of encapsulant film with copper foils

Completed module

• Mechanical test vehicles using dummy conducting/non-conducting blocks to replace the active diodes were also made using the same process flow to measure parasitic inductances and capacitances

Industry Advisory Board (IAB) November 2019

Georgia 12. Module Characterization

HP 4285A Precision LCR Meter (75kHz-30MHz)

Input/output waveforms of FBR module

Thermocouple DUT

Keithley 2400 source meter

	Simulation	Measurement
Thermal resistance Junction to Ambient [°C/W]	20.0	19.5

Industry Advisory Board (IAB) November 2019

PRC Confidential

		2019	2020			2021			
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
progress	Electrical design – noise modeling								
progress	Thermal design and optimization								
progress	Mechanical design and optimization								
progress	half-bridge module-fabrication								
progress	Electrical, thermal, reliability characteriztion								
	Electrical design –symmetric layout								
	Thermal design and optimization								
	Mechanical design and optimization								
	Current switch module-fabrication								
	Electrical, thermal, reliability characteriztion								
	Light blue: SiC half-bridge power module			H	Electrica	l Design			
			7	Fhermal	Design				
	Light Yellow: Current time window			ľ	Mechanio	cal Desig	n		

Fabrication & Assembly

Electrical, thermal, reliability Characterization

Georgia Tech

13. Schedule