

High Temperature, High Voltage and High Thermal Epoxy Molding Compound

Students: Jiaxiong Li, Haksun Lee Mentors: Dr. Jack Moon, Dr. Vanessa Smet Faculty: Prof. CP Wong

Industry Advisory Board (IAB) November 2019

Georgia Tech

The funding from Georgia Tech Packaging Research Center Industry Consortium is greatly appreciated.

Strategic Need

Georgia

Tech

- Goals & Objectives
- **Technical Approach Beyond Prior Art**

Outline

- Research Highlights
- Results
- **G** Summary
- Project Plan

1. Overview 1.1 Strategic Need

Growing needs of reliable plastic encapsulant materials with fast heat removal capability for high temperature high voltage power applications.

Fast adoption of modular molded power cards in (H)EVs

Increasing max. junction temperatures in WBG power dies (250 °C)

Increased operation voltages (12V-48V/up to 800V)

Further package minimization in high performance packaging (FOWLP etc.)

Industry Advisory Board (IAB) November 2019

Georgia

Tech

Georgia 1. Overview 1.2 Goals & Objectives

Design and demonstration of a new class of molding compounds with high-temperature stability, breakdown voltage and thermal conductivity that meet the requirements for nextgeneration high-power/voltage electronics packaging.

#	Parameter	Target	Prior Art	Challenges	Research Tasks			
1	Thermal stability	>1000 h at 250 °C	Serving temp. < 200°C	 High temperature degradation of polymers; Stability of physical properties at high temperature aging. 	Design and demonstration of a new class of mold compounds resin material with high T _g , high decomposition onset and good stability during aging.			
2	Breakdown voltage(BDV)	>50 kV/mm	30kV/mm	 Thermal and mechanical breakdown; Defects and electronic impurity; Absorbed water. 	Design and modify molding compound for 1) dielectrically robust resin and complete reaction with reduced polarity and 2) improved filler/resin interface that mediates permittivity difference.			
3	Thermal Conductivity	y >10 W/mK	5W/mK	 Limit of high thermal filler loading and size; Interfacial thermal resistance between fillers. 	Design the structure and surface of high thermal conductivity filler to create thermal pathway and couple phonon transport at 1) filler-polymer interface and 2) filler-filler interface			

Georgia Tech

1. Overview

1.3 Technical Approach Beyond Prior Art

Georgia

Tech

Research Tasks	Challenges	Research Highlight			
1) High Temperature Resin	Incorporation of high heat resistant cyanate ester in epoxy Understanding of HT storage effects on resin properties	 Concentration effects of CE/EP blend on thermo-mechanical properties Long-term HT aging examined and analyzed 			
2) Thermal Conductivity	Surface modification of BNBN self-assembly on SiO2	 Modification of particle surface potential Control of self-assembly process between BN and SiO₂ 			
3) Breakdown Voltage	Addressing the impurity level effects and moisture absorption on BDV	 Epoxy sample preparation HV thin film and oil insulation set up 			

Georgia Tech

2.1 High Temperature CE/EP Copolymer

2. Results

- Epoxy dilutes CE, rendering processable feature;
- Increasing CE content results in increased Tg and decomposition temperature;
- High crosslink density occurs at medium ratio of CE/EP;
- Novel CE components provides much improved aging stability compared to epoxy control and previous formulation

250 C aging weight loss

Georgia

Tech

 In CE'/EP 13, the HT aging degradation followed similar route compared to TGA ramp

- In CE'/EP 31, dramatically inferior thermal stability was found after aging, other degradation mechanism involved

- In CE'/EP 13, first increase of Tg (4-8 h) and then decrease, α2 was in the opposite trend, further curing occured
- In CE'/EP 31, continuous decreasing Tg was found

- Different evolution of chemical structure change in low and high CE content copolymers:
- In CE'/EP 13, consumption of epoxide groups was found during initial aging (4-8 h) followed by thermo-oxidative degradation generating carbonyl and hydroxyl groups;
- In CE'/EP 31, carbamate formation was noticed from amine and carbonyl groups;

 [∩] ≥ 200 °C
 [∩]
 [−]
 [−]

Low CE formulation is preferred regarding overall performance and cost

Georgia Tech

2. Results

2.2 High Thermal BN/SiO₂ Hybrid Filler

	K(W/mK)	P(g/cm ³)	CTE(pp <mark>m/°C)</mark>	Dk, 1MHz, 20°C	Cost(\$/kg)	Comment
Al ₂ O ₃	30	3.9	8	9.6	5	Widely used for high thermal
h-BN	400 (in plane)	1.9	38(c axis) - <mark>2</mark> .72(a axis)	4.4	40-50	2-D shape, hard to mix
Fused SiO ₂	1	2.2	0.5	4.3	1	80~90 wt% in EMC
Ероху	0.2	1.2	60	4~5	5	

- Silica will remain as the major filler in EMC due to the low cost and CTE, despite the poor thermal conductivity.
- Boron nitride is optimal for high thermal and low Dk epoxy compounds but is limited by cost and processability.

Georgia

Tech

Georgia 2. Results 2.2 High Thermal BN/SiO₂ Hybrid Filler Georgia Tech

 Synthesis of BN coated SiO₂ for enhancing processability and constructing thermal conduction network

Industry Advisory Board (IAB) November 2019

- Grafting of –OH groups on BN filler;
- Control of surface potential of SiO₂ and BN for self-assembly process;
- Coating of BN on SiO₂ structure revealed by SEM (red circle);
- Rheology behavior and thermal conductivity improvement compared to direct mixing SiO₂ and BN in epoxy will be investigated

Georgia 2. Tech 23

2. Results

2.3 Breakdown Voltage (BDV)

Challenge	Mechanism	Solution		
Impurity level	Local dielectric stressing ; Joule heat generation from ion migration	Ion trap to reduce impurity level, High temperature resin		
Filler interface	Dk difference between filler and resin generates enlarged local field; Poor interface leaving voids	Use of SiO ₂ and BN instead of high Dk fillers; Surface treatment to provide adherent interface		
Aging performance	Degradation of resin ; Moisture absorption	Synthesis of low polarity resin through phenolic ester and consume –OH groups after B stage		
Pure epoxy samples (1mm) have been tested showing over 40kV/mm (exceeds current setup capability), could reach over 200 kV/mm with				

- high purity resin
 The origin of low BDV in commercial EMC far below intrinsic polymer limit is summarized in table
- The effects of reducing moisture absorption and ion impurity will be demonstrated with working on new set

up

Georgia J 3. Summary

Accomplishments

- Demonstration of high Tg CE/EP copolymer (exceeds 250° C)
- Controllable rheology, Tg with copolymer composition
- HT aging analysis revealed different degradation mechanism in high CE and low CE formulation
- Synthesis of BN coated SiO₂ for high thermal epoxy composite
- Modification of BN morphology and surface potential
- Self-assembly of BN on SiO₂ through electrostatic attraction
- Next Set of Challenges and Risks
 - Reliability test of CE/EP blend in package, characterization on physical, mechanical and electrical properties (Low Risk)
 - Demonstration of BN coated SiO₂ in epoxy composites for high thermal (Medium Risk)
 - BDV tests with base resin and modified resin, long-term characterizations (Medium Risk)

- HT aging reliability tests on CE/EP blends
- Demonstration of loading capability and thermal improvement with novel filler
- BDV test set up, effects of moisture and ion impurity

	1Q20	2Q20	3Q20	4Q20	1Q21	2Q21	3Q21	4Q21
High- temperature								
resin system	HT aging	HT aging characterization, reliability in package						
High breakdown								
voltage	Synthe	Synthesis of less polar resin, effects of reduced moisture absorption and ion impurity on BDV Filler incorporation and combining thermal results						
lieb themsel								
High thermal								
conductivity	Demonstration of high thermal Desig filler in epoxy composite					of phonon coupler physics and chemistry		