

Sintered Nanoporous Copper Die-Attach Interconnections for High-Power, High-Temperature Applications

Students: Kashyap Mohan, Ramon Sosa Faculty: Dr. Vanessa Smet, Prof. Antonia Antoniou, Prof. Rao Tummala

Industry Advisory Board (IAB) November 2019

 This work is sponsored by SRC's "Global Research Collaboration" under task 2661.01-02 (project ended Feb 2019). We are thankful to SRC industry liaisons Dr. Luu Nguyen and Sadia Khan from Texas Instruments, and Dr. Ravi Mahajan from Intel.

 PRC's Industry consortium's "Interconnections & Assembly" program. We acknowledge YY Tan and Denise Theinpoint from On Semiconductor for their technical feedback.

Georgia Research Objectives

Georgia Tech

Model, design, fabricate and demonstrate low-cost, all-Cu die-attach interconnections with enhanced processability, by low-temperature (<250 °C), low-pressure (<5MPa) sintering, for superior electrical, thermal and reliability performances as compared to silver sintering under high operating temperatures (>250 °C) and power densities.

		Parameters		Target	Sintered joints		Technical challenges (TC)	Posoarch Tasks		
				Taiget	Ag paste	Ag films	Cu paste (Research)	rechnical chanenges (TC)		
	embly	Novel Cu die-attach material system capable of low- temperature, low-pressure assembly	Fabrication	Preforms, directly on wafer	Printing	Preforms	Printing		Design and demonstration of	
1	Before ass		Thickness	Easily tailorable 5-50um	Multiple printings	Tailorable	Multiple printings	High reactivity → difficult to stabilize material, oxidation	nanoscale, solid-state, low- modulus organics-free Cu interconnection material	
2	yldr	Superior electrical and thermal performance joints	Thermal conductivity 3-layer stack	>200 W/m-K	60-160	~200 (Alpha)	<100	Incomplete and uncontrolled densification after sintering, voids at interfaces	Material and assembly process design for very high densification to achieve bulk-Cu properties by understanding sintering kinetics	
	. assen	High thermo-mechanical reliability of joints	Shrinkage	<20%	>50%	-	>50%		Design of interconnection material and assembly process to reduce modulus/provide compliance in	
3	Afte		Modulus - assembly	60-100 GPa	10-70GPa (porosity dependent)	High	High	Decrease in stress relaxation capability with higher modulus of sintered joints		
			тст	-55/200C, 1000 cycles	Henkel – SSP 2020 -55/175C, 750 cycles- delam	Data NA		Sintered joints	axial plane	

Georgia

Tech

Ag nanofilm sintering Die Argomax®

Higher current density and heat dissipation

Prior Art

oxic, RoHS	-Low-melting temp	-	High-melting temp
guidelines	-Limited performance	-	High modulus
-		-	Low electrical and thermal

-Good performance for high temperature and reliability -High cost limiting adoption -High modulus Evolution of die attach technologies has been primarily guided by increase in thermal and electrical performances and high-temperature stability.

Ag nanopastes sintering is the current state of the art solution.

Can Ag nanopastes sintered die-attach joints meet the needs of emerging power conversion applications?

Technology	Advantages (Challenges							
Ag nanopastes sintering	 Operating T>250°C Excellent electrical and thermal performances Sintering temperatures <250°C 	 Organics →voids after densification. Organics → high-shrinkage → warpage after assembly High modulus joints as compared to solders High cost and poor ECM 							

Georgia Solution Sintered Die-Attach Solution Solution Going beyond Ag Nanopastes Sintering

PRC Confidential

Versatility in Implementation

Key Research Tasks and Prior Work

Research Tasks	Sub-tasks	Status	Prior Work
	Cu-Zn co-plating development		Nano-Cu foan film
Fabrication of	Dealloying of Cu-Zn alloy films		
Focus of this presentation	Process development for patterned NP-Cu		NP-Cu with Cu core Large-area patterned NP-Cu films
	Sintering kinetics of NP-Cu	•	100 99 5 (die) Cu metallization (die-side).
Assembly demonstration	Assembly on patterned NP-Cu (9mm ² – 25mm ² area)	•	U metallization
using NP-Cu	Assembly on NP-Cu with Cu core (9mm ² – 25mm ² area)	•	>90% densification in forming gas @300C All-Cu large area die-attach joints
Reliability	Shear strength with variation in assembly parameters	•	
characterization of sintered NP-	Thermal conductivity (3-layer)		
Cu joints	Thermal aging (200°C – until failure) Temperature cycling (-55C/200°C – until failure)		Variations in shear strength with assembly temperatures

Plating potential window from -1.2V to -1.35V based on both I-V and i-t measurements.

Industry Advisory Board (IAB) November 2019

Georgia Tech

Effect of Plating Potential on Composition and Microstructure of Cu-Zn Alloys

- Composition characterization carried out for plating potentials in the range of -1.25V to -1.55V.
- Increase in plating potential results in increase in Zn content.
- Zn > 75% gives hexagonal morphology Zn rich phases.
- Zn<75% gives with β + γ phases.

Industry Advisory Board (IAB) November 2019

PRC Confidential

Dealloying of Different Cu-Zn Alloys in 1M HCl

- Upon dealloying, the initial • morphology of the precursor Cu-Zn alloy is preserved.
- The crack size increases at %age Zn increases in Cu-Zn.
- **Residual Zn after dealloying needs** • more evaluation.

Industry Advisory Board (IAB) November 2019

Dealloying of Different Cu-Zn alloys in 1M HCl - Magnified

PRC Confidential

- Different NP-Cu morphologies

 particle like structures v/s structures with well-defined ligaments.
- Impact of different morphologies on NP-Cu properties?

Industry Advisory Board (IAB) November 2019

Georgia Tech

Free Dealloying in 1M HCl after Annealing – 150°C/90min/N₂

50.0um

5.00um

- Annealing prior to dealloying results in significant reduction in cracks after dealloying.
- Further evaluation needed to understand the underlying mechanism.

Industry Advisory Board (IAB) November 2019

- Developed and demonstrated the protocol for fabrication of NP-Cu from Cu-Zn alloy films.
- In-depth characterization of co-electrodeposition of Cu-Zn with variable Zn content completed.
- Detailed study on the impact of Cu-Zn precursor alloy structure on morphology and residual Zn of NP-Cu also completed.
- Annealing of the plated Cu-Zn films was found to mitigate the cracks formed during dealloying.
- Based on results, Cu-Zn alloy films with Zn>85% and Zn~50% selected for sintering and assembly demonstration.

Georgia

lec

PRC Confidential

	Status		2019		2020			2021		
Research Tasks		Sub-tasks		Q4	Q1	Q2	Q3	Q4	Q1	Q2
	Done	Cu-Zn co-electrodeposition process development								
	Done	Development of free dealloying protocol in dil. HCL								
Fabrication of NP-Cu	Ongoing	Dealloying Cu-Zn alloy films in different etchants								
	Ongoing	Electrochemical dealloying of Cu-Zn films								
	Ongoing	Process optimization for thickness scaling								
	Ongoing	Sintering kinetics of NP-Cu – effect of morphology and temperature								
	Ongoing	Assembly round 1 and mechanical characterization								
Assembly and reliability characterization		Thermal and reliability characterization on round 1 assembly								
		Assembly round 2 and mechanical characterization								
		Thermal and reliability characterization on round 2 assembly								
Phase -2, Sintered Cu with compliance in X-Y plane		Fabrication and assembly process design to provide compliance for stress-relaxation after assembly								

Georgia Tech

Fabrication of NP-Cu

Timeline

Assembly and reliability characterization of NP-Cu die-attach joint

Phase 2, assembly and process design for in-built compliance in the die-attach joints

Current quarter

Industry Advisory Board (IAB) November 2019