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1.1 Wide-bandgap devices and motivation 

• Wide-bandgap (WBG) devices have higher efficiencies, withstand higher breakdown 
voltages, can operate at increased switching frequencies, and function at higher 
temperatures  

• Devices seeing mass commercialization and implementation in high voltage applications 
• Design for WBG leads to miniaturization and potential hotspots 
• Reexamination of thermal management needed for smaller devices and systems

Figure 1: Material properties of power semiconductors Figure 2: Miniaturization potential with system-level 
redesign using WBG devices 
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1.2 Metal foams and additive manufacturing 

• Open-cell foams - interconnecting nodes and ligaments with high porosity, tortuous 
flow paths, and high specific surface area (SSA)

• Metal foams are used in applications ranging from catalysts for chemical reactions, 
impact absorption, and heat transfer 

• Additive manufacturing (AM) has been used for foam-type structures, but not the 
combination between AM and metal foams is relatively unexplored 

• Present work investigates the thermo-hydraulic performance of both traditionally 
manufactured metal foams and AM foams as a method of heat transfer enhancement 

Figure 3: Photograph of metal foams of various sizes purchased from ERG Aerospace, Inc.
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2.1 Characterization methodology, unit cell selection 

Figure 4: Illustration of steps for commercial stochastic foam characterization.

• 5 PPI, processed from 6101 alloy, and underwent T6 heat treatment
• Zeiss Metrotom 800 for x-ray µCT (scanned at 0.25˚ rotations, 18.43 µm voxel size) 
• ImageJ/BoneJ used for image analysis 

• Rhombic dodecahedron unit cell chosen for this work 

Figure 5: Types of unit cells seen in literature.  
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2.2 Unit cell description and experimental test samples

Figure 6: Dimetric and diagonal 
views of a rhombic dodecahedron 

based unit cell. 

Figure 7: Stochastic ERG foam with visible 
thermal epoxy layer (top) and designed foam 

(bottom)

• AM unit cell seen in figure 4 
• Unit cell based on porosity and cell diameter 
• Reasonable agreement for most properties 

between result, literature, and rhombic 
dodecahedron unit cell 

• ERG foam bonded with Omegabond 200 
Epoxy Adhesive (k = 1.38 W/m•K, thickness 
0.3 mm) to aluminum substrate 

Parameter Result Literature 
comparison 

Rhombic 
dodecahedron  

PPI 5 5 5 
Porosity 86.5% 92% 86.5% 
Ligament diameter (mm) 0.508 0.505 0.548 
Ligament length (mm) 1.94 1.72 2.014 
Pore diameter (mm)  2.58 2.61 1.35 
Cell diameter (mm) 4.65 4.60 4.65 
Surface area (m2m-3) 571.1 510 927.35 

 

Table 1: Comparison of foam properties from x-
ray µCT analysis, literature, and AM foam.
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3.1 Computational model description and assumptions

Figure 9: Reduced ERG sample geometry with TIM (left) and reduced AM 
geometry (right) used in computational studies. 

• Isosurface command in ImageJ to export stochastic STL file 
• Dimensions: 9.30 mm x 4.65 mm x 25.0 mm and 9.30 mm x 2.33 mm x 46.5 mm 
• Assumptions: 

• Representative elementary volume ( > 8 unit cells for REV) 
• Minimal inlet effects (valid at lower speeds) 
• Steady state, laminar (ReK = 37.5), incompressible flow with negligible viscous 

dissipation 
• Thermal resistance from thermal epoxy included into simulation results 

Property Al 6101  AlSi10Mg Al 5083 Water 
ρ (kg/m3) 2700 2670 2660 998 
cp (J/kg•K) 896 890 900 4182 
k (W/m•K) 167 173 117 0.6 
µ (Pa•s) - - - 0.001003 

 

Table 2: Material properties at 25 ˚C .
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3.2 Experimental testing setup and procedures 

Figure 10: Closed flow loop and data acquisition setup. 

• Working fluid: degassed, deionized (DI) water
• Equipped with type-T thermocouples and several 

pressure transducers 
• Uniform heat flux heating condition achieved with a 

heater block 
• Test samples were nominally 4 cm x 10 cm x 0.93 cm
• Heated section area of 4 cm x 10 cm

Parameter Uncertainty 
Pressure ±20 Pa  
Flow rate ±4 mL/s   
Temperature (type T thermocouple)   ±0.5 K  
Heat flux (heater block) ±0.2 W/cm2 

 

Table 3: Experimental uncertainties.
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4.1 Thermohydraulic validation

Figure 11: Reduced ERG sample geometry with TIM (left) and reduced AM geometry (right) used in computational studies. 

• Validation before using computational models for further analysis 
• Comparing total pressure drop across test section and effective Nusselt number 
• Results fit to a second-order polynomial (Darcy-Forchheimer Law) and power law fit 

Good agreement between experimental and numerical results 
• Pressure drop is higher (66%) for the AM sample, but the penalty comes with 

approximately 60% increase in effective heat transfer coefficient
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4.2 Streamlines analysis for flow tortuosity studies 

• Dispersion conductivity kd accounts for 
pore-scale mixing in volume-averaged 
simulations  

• Calmidi and Mahajan: 𝑘𝑘𝑑𝑑 = 𝐶𝐶𝐷𝐷𝜌𝜌𝜌𝜌 𝐾𝐾𝑐𝑐𝑃𝑃
• Tortuosity defined as 𝜏𝜏 = ⁄𝑠𝑠 𝐿𝐿

• s is the total distance traveled 
• L is the shortest travel length possible 

• Additional example correlation: 
𝑘𝑘𝑑𝑑
𝑘𝑘𝑓𝑓

= 𝑐𝑐 𝜏𝜏 − 1 1 −
𝜀𝜀
𝜏𝜏 𝑅𝑅𝑅𝑅𝑝𝑝𝑃𝑃𝑃𝑃

• Tortuosity values were calculated as 1.093 
and 1.038, respectively 

• Implies that commercial foam has higher 
thermal dispersion conductivity 

• Further studies regarding kd for either 
structure type should be undertaken 

Figure 12: Streamlines visualized for stochastic geometry 
with u = 2.5 cm/s (top) and u = 10 cm/s (bottom)

Figure 13: Designed sample streamlines for u = 10 cm/s. 



11Industry Advisory Board (IAB)
November 2019 Georgia Institute of Technology

PRC Confidential4. Results 
4.3 Velocity and pressure contours

Figure 14: Flow fields for u = 10 cm/s for the commercial and AM foams a) Pressure contours, b) Velocity contours, 
c) Pressure contour, and d) Velocity contour for AM.

• Random vs. ordered flow patterns 
• Existence of large stagnant zones in the commercial sample (with relative lack of such 

large low velocity zones in the AM geometry)
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4.4 Resistor network for thermal interface material analysis

Figure 15: Non-dimensional heat transfer performance for AM 
foam and ERG Inc. foam with varying kTIM values – (N) denotes 

values found using a resistance network approach.

• Quantifying reasons for performance 
improvement – structural differences 
in the foam vs. elimination of the TIM 

• Unew calculated for three kTIM values 
(kTIM = 4.0, 40, and ∞ W/m•K to 
represent high conductivity epoxy, a 
solder, and no TIM layer) 

• 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 1
𝑈𝑈𝑘𝑘=1.38

− 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

+ 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇
𝑘𝑘𝑜𝑜𝑛𝑛𝑛𝑛

−1

• 1D resistor network validated with k = 
4.0 W/m•K results 

• Incrementally improving kTIM has a 
large impact at lower values but not 
so much at higher k values 

• Performance of the commercial foam 
approaches AM foam with increasing 
flow speeds, which may be caused by 
the differences in kd
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4.5 Interfacial heat transfer coefficient and fin efficiency analysis

• Interfacial heat transfer coefficient (hsf) is important for volume-averaged CFD simulations 
• Calmidi and Mahajan: 𝑁𝑁𝜌𝜌𝑠𝑠𝑓𝑓 = ℎ𝑠𝑠𝑠𝑠𝑑𝑑𝑜𝑜

𝑘𝑘𝑠𝑠
= 0.52𝑅𝑅𝑅𝑅𝑙𝑙0.5𝑃𝑃𝑃𝑃0.37

• Hunt and Tien: 𝑁𝑁𝜌𝜌𝑠𝑠𝑓𝑓 = ℎ𝑠𝑠𝑠𝑠𝑑𝑑𝑜𝑜
𝑘𝑘𝑠𝑠

= 0.418𝑅𝑅𝑅𝑅𝑙𝑙0.53𝑃𝑃𝑃𝑃1/3

• Reasonable but not good agreement between correlations and numerical results 
• Commercial foam has better fin efficiency except at lower inlet velocities – but this is due 

to the fact that the isothermal simulation convects much more heat for the AM model

Figure 16: Comparison of numerical 
results and correlations results for 

commercial and AM foam

Figure 17: Fin efficiency for a 2.5 cm sample length (left) and 
nondimensionalized outlet temperature comparison for constant 

and variable ligament temperature (right). 
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• Demonstrated the advantages of traditionally manufactured and AM metal foams for 
thermal management  

• Analyzed using commercial CFD-HT software, validated computational models
• Tortuosity results suggests that kd should be adjusted for the AM structure
• Commercial foams would be viable if kTIM values could be increased 
• Interfacial heat transfer coefficients were shown to agree somewhat with correlations 

found in literature 
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