

Design and Demonstration of High-Performance and Ultra-Thin Antenna-Integrated 3D Glass-based mm-wave Packages

Students:

<u>Atom Watanabe</u> Muhammad Ali Tong-Hong Lin Siddharth Ravichandran Yiteng Wang

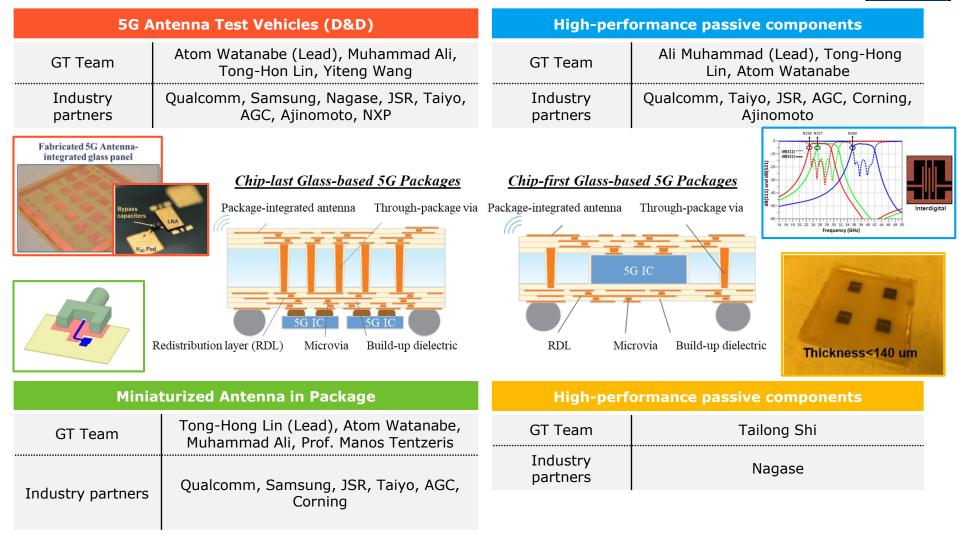
Faculty:

Prof. Raj Pulugurtha Prof. Manos Tentzeris Prof. Rao R. Tummala Prof. Madhavan Swaminathan

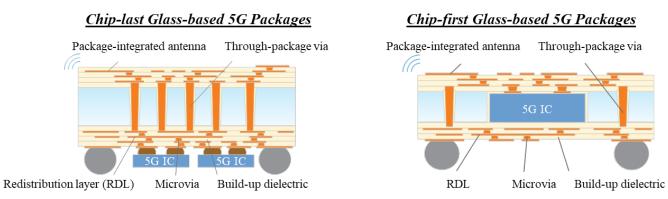
Industry:

Nobuo Ogura (Nagase) Kimi Kanno(JSR) Yoichiro Sato (AGC) Dan Oh (Samsung) Masahiro Karakawa (Ajinomoto) Dan Okamoto (Taiyo Inc.) Raj Parmar (Corning), Christian Hoffman (Qualcomm)

Outline


- □ Goals & Objectives
- Prior Work
- Technical Approach
- Results & Key Accomplishments
- **Comparison with Prior Art**
- □ Schedule
- □ Summary

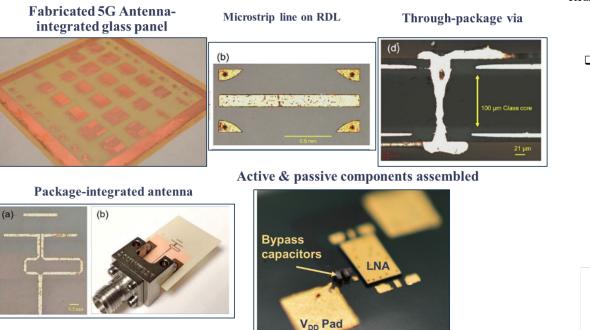
Nov. 7-8, 2019


5G D&D Technologies and Team

Goals and Objectives

Model, design, and demonstrate high-performance ultra-thin antenna-integrated 3D glass-based mm-wave modules on 100-200 µm thick glass substrates for 5G packages.

Topics	Metrics	Objectives	Prior Art	Challenges	
Chip-to- Antenna Interconnects	Performance	 System interconnects IL < 1 dB Precision < 2% with 50 µm 	 System interconnects IL = 3 – 5 dB Precision: 6 – 10 % with 80 µm 	 Conductor and dielectric losses at 28 or 39 GHz. Impedance discontinuity in vias. Ultra-thin low loss materials Process variations 	
	Miniaturization	 RDL thickness: 15 – 20 µm Signal routing density: 2X 	 RDL thickness: > 50 µm Signal routing density: X 		
3D Antenna- integrated mm-wave Modules	Performance	 System interconnects: IL < 1 dB Antenna bandwidth 24.25 – 29.5 GHz 	 System interconnects IL = 3 – 5 dB Antenna bandwidth 26.5 – 29.5 GHz 	Low-loss thin-film dielectricAntenna efficiency with low	
	Miniaturization	 Total module thickness < 400 μm Number of metal layers < 6 	 Total thickness > 800 µm Number of metal layers > 10 	thicknessHeterogeneous integration of components	


Georgia Institute of Technology

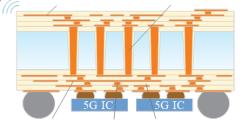
Prior Work

Designed and demonstrated chip-last 3D glass-based panel-level package with antenna-in-package.

- 21.1% of FBW was achieved in the measurements of antenna.

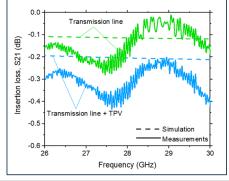
- Good model-to-hardware correlation with precise fabrication of transmission lines, TPVs, and antenna

5


A. Watanabe, T. Lin, Muhammad Ali, T. Ogawa, P. M. Raj, M. Tentzeris, R. Tummala, M. Swaminathan, "3D Glass-Based Panel-Level Package with Antenna and Low-Loss Interconnects for Millimeter-Wave 5G Applications," Proc. IEEE IMC-5G, August 2019.

Nov. 7-8, 2019

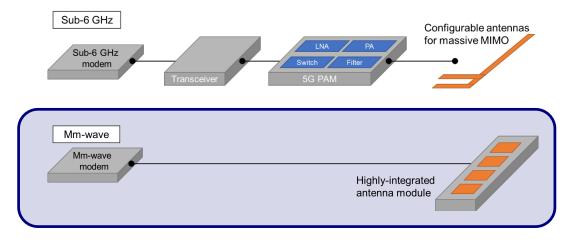
Package-integrated antenna


Through-package via

Redistribution layer (RDL) Microvia Build-up dielectric

Microstrip line & TPV

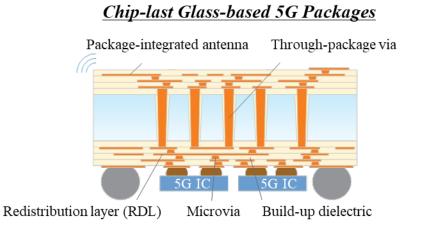
Simulation and characterization results of the glass-package interconnects.

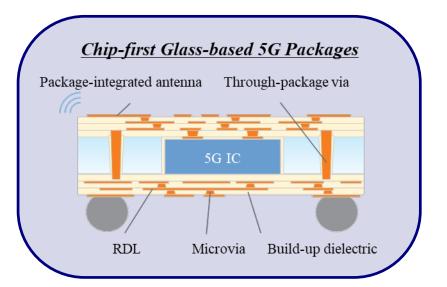


		Simulation	Measurement
Microstrip line	dB	0.114	0.162
wherosurp line	db/mm	0.076	0.108
TPV	dB	0.090	0.191
11 V	db/TPV	0.045	0.095

Georgia Tech

Technical Approach

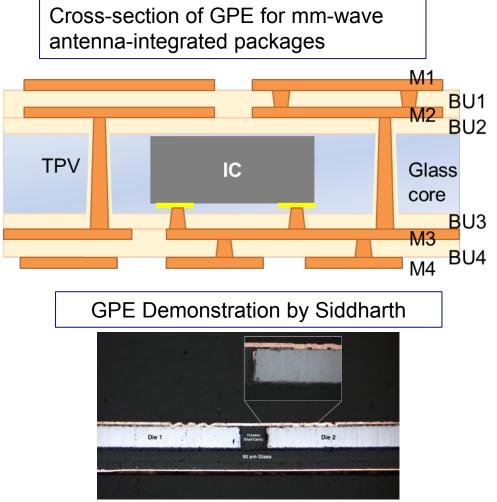

System Architectures for 5G communications



Heterogeneous Integration

- 1. Glass-panel embedding
- 2. LNA embedding
- 3. Dual-pol patch antenna array
- 4. Bandpass filters
- 5. Impedance-matched ultrashort interconnects

Glass-based mm-wave packaging structures



Georgia Institute of Technology

PRC Confidential

Georgia Tech

1. Glass-Panel Embedding for mm-wave Antenna-Integrated Packages

Ravichandran, S., et al. (2019). Low-Cost Non-TSV Based 3D Packaging Using Glass Panel Embedding (GPE) for Power-Efficient, High-Bandwidth Heterogeneous Integration. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC).

7

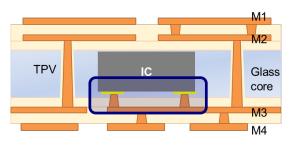
Layer	Stack-up	Thickness	
M1	<u>Antenna</u>	8 µm	
BU1	Taiyo Zaristo	<u>15 µm</u>	
M2	<u>Antenna</u>	8 µm	
BU2	Taiyo Zaristo	15-71 μm	
Core- Glass	AGC Glass core with TGVs & Cavity	200 µm	
BU3	Taiyo Zaristo	15 µm	
M3	<u>GND, Antipads</u>	8 µm	
BU4	Taiyo Zaristo	<u>71 µm</u>	
M4	Routing, Filters	8 µm	

Feature	Dimensions (µm)
Min. L/S	20/20
TGV Dia.	150
Via-in-Via Dia.	120

Georgia Institute of Technology

Georgia Tech

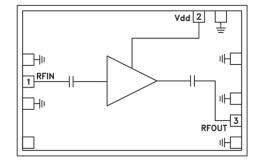
PRC IAB Meeting 1. Glass-Panel Embedding for mm-wave **Antenna-Integrated Packages** 1, Attach cavity and TGV drilled glass 6, Via drilling with UV laser substrates on temporary carrier glass **Glass carrier** 7, Laminate low-loss dielectric material and cure 2, Mount IC 3, Laminate low-loss polymer and cure 8, Remove carrier and planarize the laminated low-loss polymer 4, Attach temporary adhesive and carrier 9, Via-in-via process: Laser drill into glass on the top side low-loss dielectric Glass Carrier 10, Metallization of double sides RDLs 5, Remove the bottom carrier

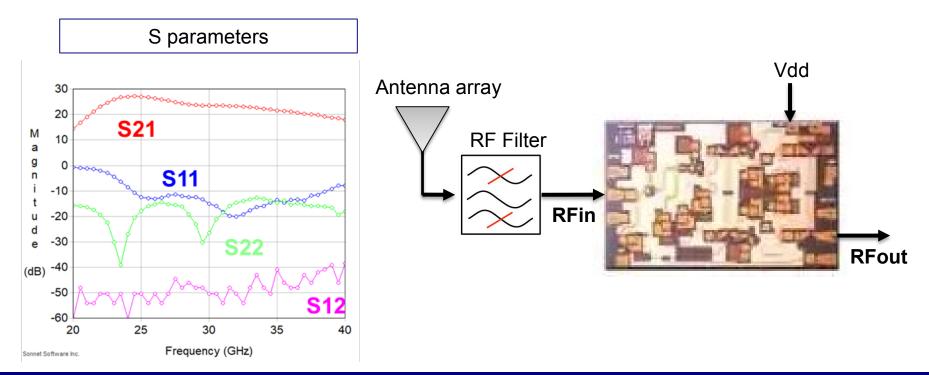

Georgia Institute of Technology

Georgia Institute of Technology

Nov. 7-8, 2019

PRC Confidential


2. LNA Embedding into Glass-Core Substrate



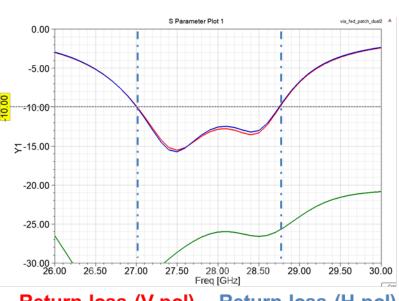
• Excellent Noise Figure: 2.0 dB

PRC IAB Meeting

- Gain: 22 dB
- P1dB Output Power: +11 dBm
- Supply Voltage: +5V @ 66 mA
- Die Size: 2.10 x 1.37 x 0.1 mm

PRC Confidential

H-pol input


Georgia Tech

3. Dual-pol patch antenna array Dual-pol stacked patch antenna TPV feeding

200-µm glass core

GND plane

H-pol port

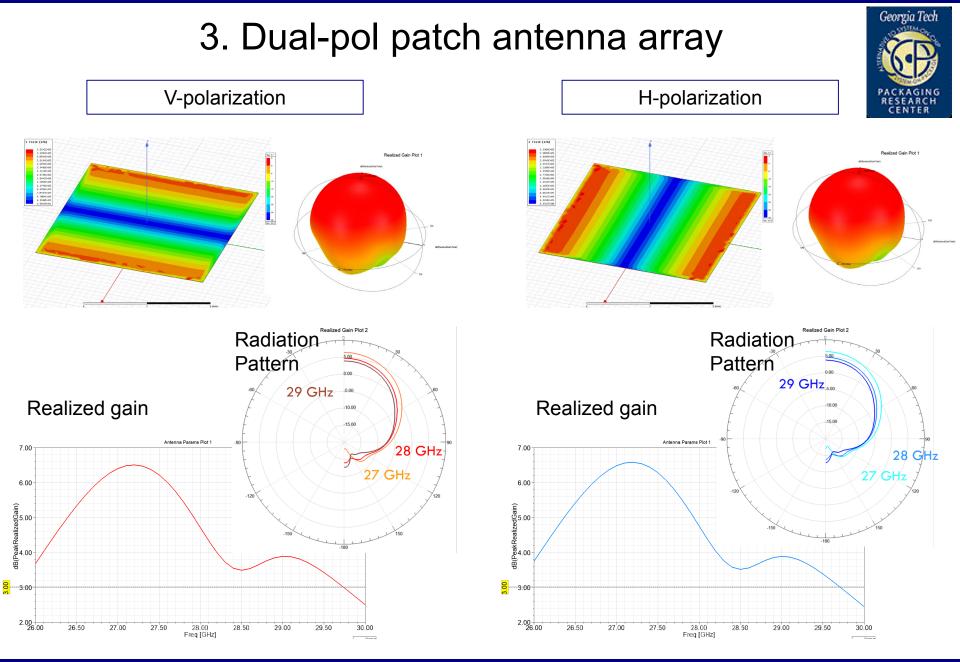
Return loss (H-pol) Return loss (V-pol) Isolation of the two polarizations

>TPV-fed stacked patch antenna

- ✓ Dimensions: 3 mm x 3 mm
- ✓ BW: 27.0 28.8 GHz

V-pol input

- ✓ Dual-polarized antenna
- ✓ Insertion loss |S11| < -10 dB
- ✓ Isolation between polarizations |S21| < -20 dB

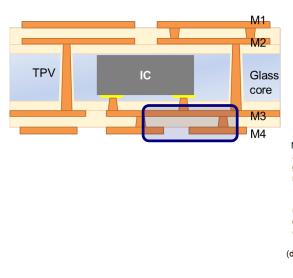

Georgia Institute of Technology

Nov. 7-8, 2019

TPV antipad

V-pol port

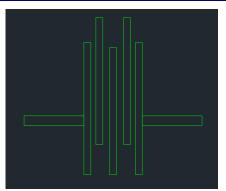
PRC Confidential

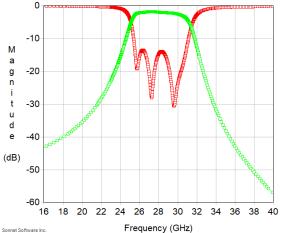

Georgia Institute of Technology

PRC Confidential

4. Compact Bandpass Filters

Bandpass filters

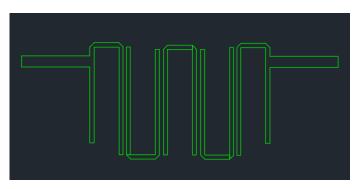

- Package-level miniaturized bandpass filters
- Incorporated into M3 & M4.
- Isolated from Antennas
- Minimum features: 40 µm



Courtesy:	Muhammad	Ali
-----------	----------	-----

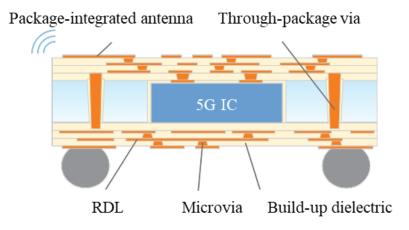
5 th	order	Interdigital BF	PF
-----------------	-------	-----------------	----

Physical Dimensions (mm ³)	Electrical Dimensions $(\lambda_0)^3$		
3.06×2.25×0.1885	0.29×0.21×0.018		



5th order Hairpin BPF

Physical Dimensions (mm ³)	Electrical Dimensions $(\lambda_0)^3$		
4.65×2.12×0.1885	0.43×0.19×0.018		



Georgia Institute of Technology

Comparison with Prior Art

Chip-first Glass-based 5G Packages

Heterogeneous Integration

- 1. Glass-panel embedding
- 2. LNA embedding
- 3. Dual-pol patch antenna array
- 4. Bandpass filters
- 5. Impedance-matched ultrashort interconnects

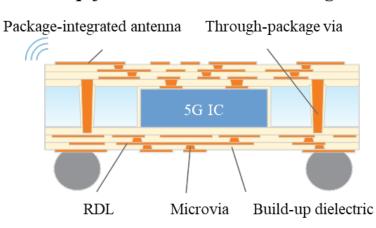
Торіс	Metrics	Objectives	Prior Art
3D Antenna- integrated mm-wave Modules	Performance	 System interconnects: IL < 1 dB Antenna bandwidth 24.25 – 29.5 GHz Precision < 2% with 50 µm 	 System interconnects IL = 3 – 5 dB Antenna bandwidth 26.5 – 29.5 GHz Precision: 6 – 10 % with 80 µm
	Miniaturization	 Total module thickness < 400 µm Number of metal layers < 6 	 Total thickness > 800 µm Number of metal layers > 10

Georgia Tech

Schedule

		2019		2020	
		Q3	Q4	Q1	Q2
Done	Antenna-to-transceiver and package designs with advanced glass substrate design rules				
In Progress	GPE process development for the specific designs				
	Substrate fabrication with die embedding in 200 µm glass				
	Module performance measurement, characterization, analysis				

<u>Light Yellow:</u> Current time window


- Electrical Design and Optimization
 - Fabrication
- Characterization and Correlation
 - Graduation

Georgia Institute of Technology

Summary

- Low-loss interconnects with through-package vias in low-loss dielectric polymer thin-films, and package-integrated dual-pol patch antenna structures were modeled and designed around 28 GHz on 200 µm thick glass substrate.
- Fabrication of the GPE structures and the characterization of the whole RF chain will be completed by May IAB 2020.

Chip-first Glass-based 5G Packages

Heterogeneous Integration

- 1. Glass-panel embedding
- 2. LNA embedding
- 3. Dual-pol patch antenna array
- 4. Bandpass filters
- 5. Impedance-matched ultra-short interconnects