

Thermal Management for 6G Module Using Vapor Chamber

Faculty: Prof. Madhavan Swaminathan and Prof. Yogendra Joshi

Students: Nahid Aslani Amoli, Lydia Mele and Madeline Parnall (UG)

This work was supported in part by ASCENT, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

Outline

- □ Goals & Objectives
- Background Details
- Technical Approach
- Results
- □ Next Steps
- □ Summary

PRC Confidential

2

Nov. 7-8, 2019

Goals and Objectives

- Study of using Vapor Chamber (VC) for thermal management of sub-THz RF Modules through modeling
- VC, similar to a flat heat pipe but different form factor, is a 2phase cooling solution which transfers the heat through the phase change of liquid into vapor (evaporator) and back from vapor to liquid (condenser).

□ Working principle of heat pipe and VC

PRC IAB Meeting

Background Details

Use of Fan-Out Panel Level Packaging (FOPLP) for sub-THz RF Modules

Georgia Institute of Technology

Nov. 7-8, 2019

4

PRC Confidential

PRC IAB Meeting

Technical Approach

□ Conduction-based model of VC

- Isotropic approach which treats the whole VC as a rectangular plate having an isotropic conductivity (k_x = k_y = k_z = k_{vc});
- Orthotropic approach in which the effective thermal conductivity is assumed to be composed of two components: the straightforward conductivity (k_s) and the lateral conductivity (k_l). In this approach, k_z = k_s and k_x = k_y = k_l.
- In this study, the VC was modeled with orthotropic approach in ANSYS Workbench using Steady State Thermal Module.

PRC Confidential

Georgia Institute of Technology

Technical Approach (Cont.)

Model Inputs

- □ Heat source size (PA module) = 10mm*10mm
- \Box Heat flux of PA module = 100 W/cm² & 200 W/cm²
- □ Heat transfer coefficient of the cold plate (1mm thick) = 1500 [W/m².k]
- Assumed values for thermal conductivities of VC: k_x = k_y = 1500 [W/m.k] and k_z = 300 [W/m.k]
- □ Assumed maximum junction temperature of PAs (T_{jmax}) = 100 °C
- □ Ambient temperature = $22 \circ C$
- □ Typical range of the VC thickness is 1mm-1.5mm. Here, it is set to 1mm.
- The parametric analysis was conducted on dimensions of VC to keep T_{jmax} smaller than 100 °C

	Dielectric	ΡΑ	Glass	Cu-Gr Composite	Solder	Metal Carrier
Material	Resin Epoxy	Silicon	Glass	Copper	Tin	Copper
lsotropic Thermal Conductivity (W/m.K)	0.15	148	1.4	400	64	400

Georgia Tech

Preliminary Results

- \Box Simulation results (Heat flux = 100 W/cm²)
- To keep T_{jmax} smaller than 100 °C, both length and width of VC should be larger than 35.5 mm which give T_{jmax} equal to 100.15 °C.

Georgia Tech

Preliminary Results (cont.)

- □ Simulation results (Heat flux = 200 W/cm^2)
 - After optimization, the length and width of VC are determined as 158.87 mm and 156.96 mm which gives T_{imax} equal to 72.402 °C.

Preliminary Results (cont.)

□ Simulation results for 1 array

Glass panel size: 50mm*30mm*100um
VC Size: 35mm*30mm*1mm
Heat flux of PA = 100 W/cm² & 200 W/cm²

Georgia Institute of Technology

Preliminary Results (cont.)

□ Simulation results for 1 array

Glass panel size: 80mm*50mm*100um
VC Size: 50mm*50mm*1mm
Heat flux of PA = 100 W/cm² & 200 W/cm²

Georgia Institute of Technology

Next Steps

- Georgia Tech
- Goal is to use rigorous thermal modeling to design, fabricate and

characterize the vapor chamber over the next two years by 2021.

	2019 2020					2021		
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
1- Estimation of VC dimensions through simulations								
2- Wick materials, selection of working fluids and wick fabrication demonstration								
3- First VC prototype fabrication, assembly and charging								
4- First VC prototype parametric thermal evaluation								
5- Wick design/manufacturing refinement through detailed VC modeling								
6- Second generation VC prototype fabrication, assembly and testing								
7- Integration of VC with sub-THz RF module								
8- Thermal performance evaluation with sub-THz RF module								

Summary

- Effectiveness of VC for thermal management of 6G module was proved through the simulation results in ANSYS Workbench.
- Finding the right dimensions of VC considering the size and heat flux of the heat source along with the liquid convection from cold plate can lead to an efficient thermal management solution for future 6G module.
- □ For the heat flux of 100 W/cm², the parametric study showed that both length and width of VC should be larger than 35.5 mm to keep the PA junction temperature below 100 °C.
- ❑ Using optimization approaches, for the heat flux of 200 W/cm², the length and width of VC are determined as 158.87 mm and 156.96 mm to keep the PA junction temperature below 100 °C.