

Design and Demonstration of High-Performance and Ultra-Thin Antenna-Integrated 3D Glass-based mm-wave Packages

Students:

Atom Watanabe

Muhammad Ali

Tong-Hong Lin
Siddharth Ravichandran

Yiteng Wang

Faculty:

Prof. Raj Pulugurtha

Prof. Manos Tentzeris

Prof. Rao R. Tummala

Prof. Madhavan Swaminathan

Industry:

Nobuo Ogura (Nagase)

Kimi Kanno(JSR)

Yoichiro Sato (AGC)

Dan Oh (Samsung)

Masahiro Karakawa (Ajinomoto)

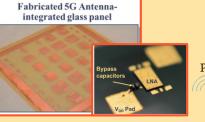
Dan Okamoto (Taiyo Inc.)

Raj Parmar (Corning),

Christian Hoffman (Qualcomm)

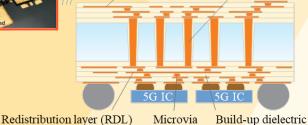
GT Team

5G D&D Technologies and Team


5G Antenna Test Vehicles (D&D)

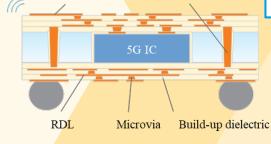
Atom Watanabe (Lead), Muhammad Ali, Tong-Hon Lin, Yiteng Wang

Industry Qualcomm, Samsung, Nagase, JSR, Taiyo, partners AGC, Ajinomoto, NXP


High-performance passive components		
GT Team	Ali Muhammad (Lead), Tong-Hong Lin, Atom Watanabe	
Industry	Qualcomm, Taiyo, JSR, AGC, Corning,	

Ajinomoto

Chip-last Glass-based 5G Packages


Package-integrated antenna Through-package via

Chip-first Glass-based 5G Packages

partners

Through-package via Package-integrated antenna Through-package via

Miniaturized Antenna in Package

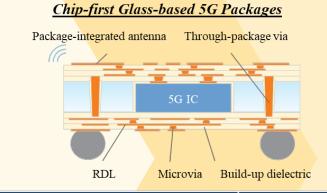
GT Team	Tong-Hong Lin (Lead), Atom Watanabe, Muhammad Ali, Prof. Manos Tentzeris
---------	---

Industry partners

Qualcomm, Samsung, JSR, Taiyo, AGC, Corning

High-performance passive components

GT Team	Tailong Shi
Industry partners	Nagase

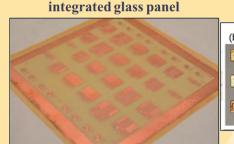


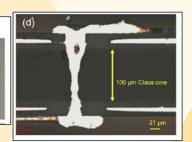
Goals and Objectives

Model, design, and demonstrate high-performance ultra-thin antennaintegrated 3D glass-based mm-wave modules on 100-200 μm thick glass substrates for 5G packages.

Chip-last Glass-based 5G Packages Package-integrated antenna Through-package via 5G IC 5G IC Redistribution layer (RDL) Microvia Build-up dielectric

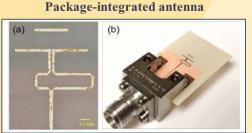
Topics	Metrics	Objectives	Prior Art	Challenges
Chip-to- Antenna	Performance	 System interconnects IL < 1 dB Precision < 2% with 50 μm 	 System interconnects IL = 3 – 5 dB Precision: 6 – 10 % with 80 μm 	 Conductor and dielectric losses at 28 or 39 GHz. Impedance discontinuity in vias.
Interconnects Miniaturization	 RDL thickness: 15 – 20 μm Signal routing density: 2X 	 RDL thickness: > 50 μm Signal routing density: X 	Ultra-thin low loss materials Process variations	
3D Antenna-	Performance	 System interconnects: IL < 1 dB Antenna bandwidth 24.25 – 29.5 GHz 	 System interconnects IL = 3 – 5 dB Antenna bandwidth 26.5 – 29.5 GHz 	Low-loss thin-film dielectricAntenna efficiency with low
integrated mm-wave Modules	Miniaturization	 Total module thickness < 400 µm Number of metal layers < 6 	 Total thickness > 800 μm Number of metal layers > 10 	 thickness Heterogeneous integration of components

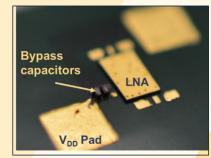

Prior Work

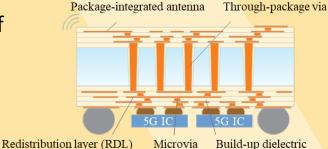

Designed and demonstrated chip-last 3D glass-based panel-level package with antenna-in-package.

- 21.1% of FBW was achieved in the measurements of antenna.
- Good model-to-hardware correlation with precise fabrication of transmission lines, TPVs, and antenna

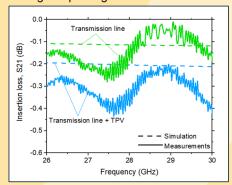
Fabricated 5G Antenna-




Microstrip line on RDL


Through-package via

Active & passive components assembled



Chip-last Glass-based 5G Packages

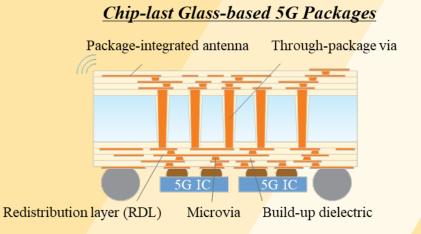
Microstrip line & TPV

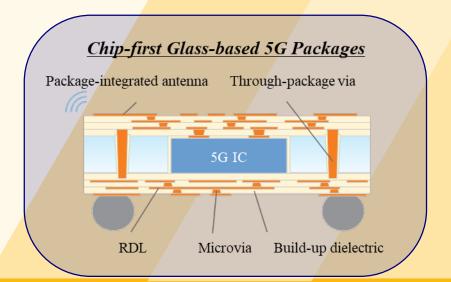
Simulation and characterization results of the glass-package interconnects.

		Simulation	Measurement
Microstrip line	dB	0.114	0.162
	db/mm	0.076	0.108
TPV	dB	0.090	0.191
11 V	db/TPV	0.045	0.095

A. Watanabe, T. Lin, Muhammad Ali, T. Ogawa, P. M. Raj, M. Tentzeris, R. Tummala, M. Swaminathan, "3D Glass-Based Panel-Level Package with Antenna and Low-Loss Interconnects for Millimeter-Wave 5G Applications," Proc. IEEE IMC-5G, August 2019.

Technical Approach


System Architectures for 5G communications



Heterogeneous Integration

- Glass-panel embedding
- LNA embedding
- Dual-pol patch antenna array
- 4. Bandpass filters
- 5. Impedance-matched ultra-short interconnects

Glass-based mm-wave packaging structures

TPV

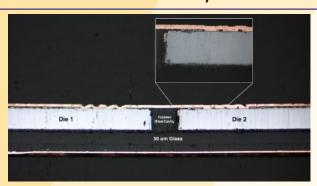
1. Glass-Panel Embedding for mm-wave Antenna-Integrated Packages

M1

M2

Glass core

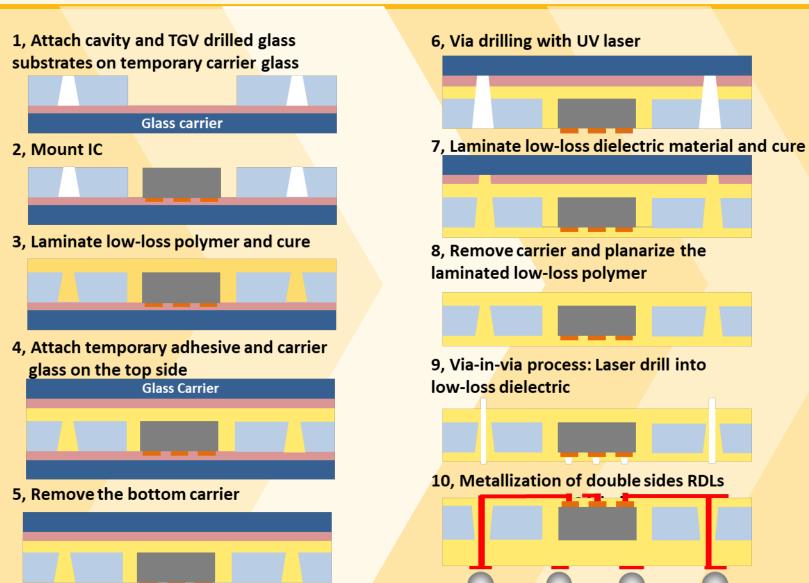
M3


BU₃

IC

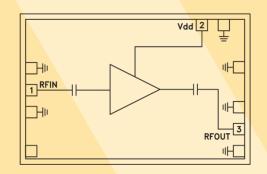
GPE Demonstration by Siddharth

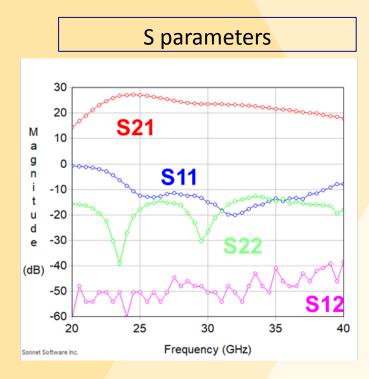
Ravichandran, S., et al. (2019). Low-Cost Non-TSV Based 3D Packaging Using Glass Panel Embedding (GPE) for Power-Efficient, High-Bandwidth Heterogeneous Integration. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC).


Layer	Stack-up	Thickness
M1	<u>Antenna</u>	8 µm
BU1	Taiyo Zaristo	<u>15 μm</u>
M2	<u>Antenna</u>	8 µm
BU2	Taiyo Zaristo	15-71 μm
Core- Glass	AGC Glass core with TGVs & Cavity	200 µm
BU3	Taiyo Zaristo	15 µm
М3	GND, Antipads	8 µm
BU4	Taiyo Zaristo	<u>71 µm</u>
M4	Routing, Filters	8 µm

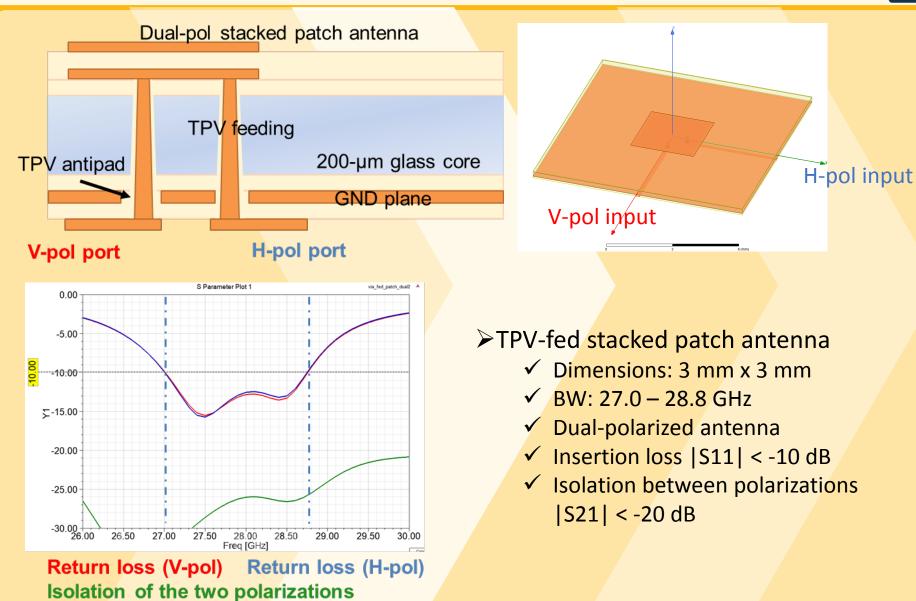
Feature	Dimensions (µm)
Min. L/S	20/20
TGV Dia.	150
Via-in-Via Dia.	120

1. Glass-Panel Embedding for mm-wave Antenna-Integrated Packages

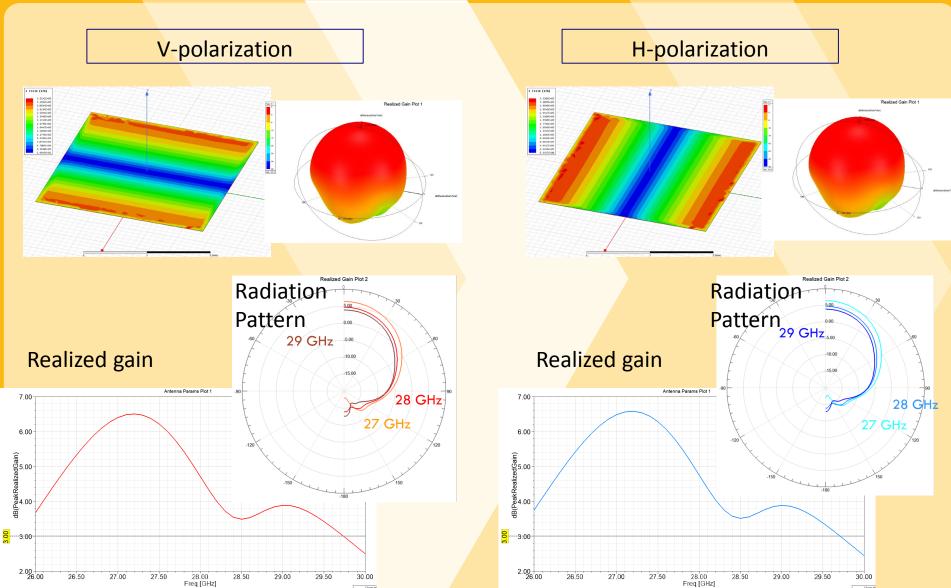



2. LNA Embedding into Glass-Core Substrate

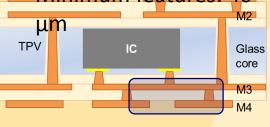
- Excellent Noise Figure: 2.0 dB
- Gain: 22 dB
- P1dB Output Power: +11 dBm
- Supply Voltage: +5V @ 66 mA
- Die Size: 2.10 x 1.37 x 0.1 mm



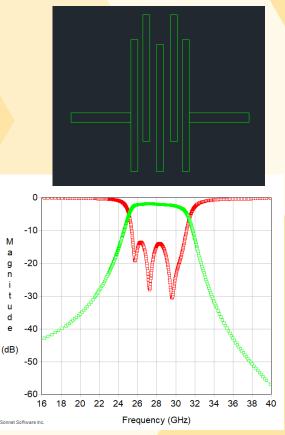
3. Dual-pol patch antenna array



3. Dual-pol patch antenna array



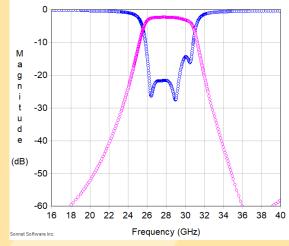
4. Compact Bandpass Filters


Bandpass filters

- Package-level miniaturized bandpass filters
- Incorporated into M3 & M4.
- Isolated from Antennas
- Minimum features: 40

5th order Interdigital

DDE		
Physical Dimensions (mm ³)	Electrical Dimensions $(\lambda_0)^3$	
3.06×2.25×0.1885	0.29×0.21×0.018	



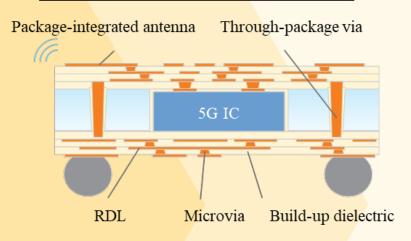
g

5th order Hairpin

DDE			
Physical Dimensions (mm ³)	Electrical Dimensions $(\lambda_0)^3$		
4.65×2.12×0.1885	0.43×0.19×0.018		

Schedule

		20)19	20	20	
		Q3	Q4	Q1	Q2	
Done	Antenna-to-transceiver and package designs with advanced glass substrate design rules					
In Progress	GPE process development for the specific designs					
	Substrate fabrication with die embedding in 200 µm glass					
	Module performance measurement, characterization, analysis					
<u>Ligł</u>	nt Yellow: Current time window	Fabricati	<mark>on riza</mark> tion and	Optimization Correlation	n	



Georgia

Tech

Comparison with Prior Art

Chip-first Glass-based 5G Packages

Heterogeneous Integration

- 1. Glass-panel embedding
- 2. LNA embedding
- 3. Dual-pol patch antenna array
- 4. Bandpass filters
- 5. Impedance-matched ultra-short interconnects

Topic	Metrics	Objectives	Prior Art
3D Antenna- integrated	Performance	 System interconnects: IL < 1 dB Antenna bandwidth 24.25 – 29.5 GHz Precision < 2% with 50 μm 	 System interconnects IL = 3 – 5 dB Antenna bandwidth 26.5 – 29.5 GHz Precision: 6 – 10 % with 80 μm
mm-wave Modules	Miniaturization	 Total module thickness < 400 μm Number of metal layers < 6 	 Total thickness > 800 μm Number of metal layers > 10