

Thermal and Thermomechanical Analysis of GPE Packages: Integrated Heat Spreader Design for High Heat Flux Densities and Reliability

Students: Nithin Nedumthakady, Ryan Wong Faculties: Dr. Vanessa Smet, Prof. Rao Tummala

Industry Advisory Board (IAB) November 2019

Georgia Acknowledgements

Industry Members:

Mentors and Faculty:

- Dr. Vanessa Smet
- Prof. Raj Pulugurtha
- Prof. Rao Tummala
- Prof. Madhavan Swaminathan

Students:

- Nithin Nedumthakady
- Ryan Wong

All PRC Members, Students, and Staff

Tha<mark>nk you!</mark>

Industry Advisory Board (IAB) November 2019

 Modeling, design, fabrication and demonstration of low stress, high thermal conductivity, low thermal resistance interfaces between device and Cu heat spreader in glass embedded packages

1. Objectives

Georgia

Tech M

 Integration of thermal management solution into a MCM GaN PA/CMOS GPE package with EMI shielding

Parameter	Prior Art	Target	Challenges	Research Tasks		
Tj (°C)	< 85			Transient, multi-physics modeling and design of interface to the chip		
Heat Flux (W/mm ²)	3-10		Thormal vs. Stross			
Bulk thermal conductivity (W/mK)	5-399	≥400	(Performance trade-off)	(material properties and geometry) for low-stress and high thermal conductivity		
CTE (× 10 ⁻⁶)/K	-30-17.8	≤4.2	Miningining the provel	Design, demonstrate, and characterize material for low stress, high thermal conductivity, low thermal resistance interface between device and Cu heat spreader		
Thermal Resistance (mm²K/W)	5-30	<2	interfacial resistance: Ultra-thin, compliant, high thermal conductivity interface			
			Low temp, low pressure processing	Material processing through electrodeposition		
Thickness (µm)	200-500	<100	Integration of heterogeneous structures with long-term reliability	Integration of process in multi- chip, GPE module with fine-line RDL, EMI shielding, and thermal decoupling		

Georgia Tech

Georgia 2. Strategic Need

Material Innovation for High Thermal Conductivity but Low Thermal Contact Resistance Interfaces to Handle Max Heat

Need for new class of passive substrate-integrated thermal management solutions that will be able to handle increased heat densities of emerging power ICs

Industry Advisory Board (IAB) November 2019

Module Heat Flux (Watts/cm²)

3. Challenges

- Metals, such as Cu, have excellent thermal conductivity but suffer from higher CTE compared to Si/GaN/SiC/Glass
- Composite materials are being created to solve this challenge

Minimizing Thermal Interfacial Resistance

- To minimize thermal contact resistance, need perfect contact
- Ultra-thin material that can conform to surface

Low-Temperature, Low Pressure Processing

- Processing of exotic materials are high-temp (~800°C) and high pressure (~60MPa)
- Temperatures and pressures should ideally be compatible with existing CMOS processes

Industry Advisory Board (IAB) November 2019

Georgia Tech

Thermal solutions are being placed extremely close to the die surface to minimize thermal resistance

Georgia Tech

Georgia 5. Unique Approach

Key Innovations:

- Near-zero thermal interface resistance between chip and heat spreader though sputtering of ultra-thin film, conductive seed layer and electrodeposition processes
- Design of interface material properties and geometry for thermal and stress mitigation
- Integration into multi-chip GPE package with fine-line RDL, EMI shielding, and thermal decoupling using glass

Research Methodology:

Transient, multi-physics modeling and design of interface to the chip (material properties and geometry) for low-stress and high thermal conductivity

Design, demonstrate, and characterize material for low stress, high thermal conductivity, low thermal resistance interface between device and Cu heat spreader Integration of process in multi-chip, GPE module with fine-line RDL, EMI shielding, and thermal decoupling

Industry Advisory Board (IAB) November 2019

• Exploring electrodeposition of magnetically-aligned Cu-graphene composites for high heat flux,

low-CTE, low-stress heat transfer material

Industry Advisory Board (IAB) November 2019

5. Unique Approach (Cont.)

Aligned Cu-Gr Composites

- Graphene can be used to enhance the thermal conductivity of copper
- Graphene (negative CTE) can be used to tailor the CTE within Cu-GR composite
- Aligning graphene within composite is critical to achieving theoretical values

Georgia Tech Georgia Tech

Georgia 6. Results Thermal and Thermomechanical Modeling: Geometry

Geometry Considerations for Thermal and Thermomechanical Model

Image of chip embedded in cavity without dielectric layers: Red bars denote locations of applied heat flux

Wireframe figure of entire package to be modeled

- Embedded chip within glass panel
- Forced convection applied on backside of panel; natural convection applied to all other surfaces
 - Coefficients can be varied to emulate different external heat exchange methods
- Heat input applied to gate approximations on the die: 14.4W
 - This will be varied in the future to explore multiple scenarios
- Three case scenarios examined: no heat spreader, encapsulated die within dielectric, and directly bonded copper heat spreader

Georgia Tech

Georgia Tech 6. Results Thermal and Thermomechanical Modeling:

Max Die Temp: 204.66°C

Direct-Bonded Cu Heat Spreader

Max Die Temp: 184.64°C

Backside of Chip Exposed to Air

Max Die Temp: 206.3°C

- Direct-bonded Cu heat spreader has ~20 25°C decrease in maximum die temperature over other scenarios
- Glass package keeps the heat isolated and localized within package – good for multi-chip packages
- Packages will be modeled to understand localized stresses

		2019		2020			2021		
		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
done	1 – Thermal modeling								
progress	2 – Thermomechanical modeling								
progress	3 – Graphene alignment method								
progress	4 – Cu-graphene composite								
	5 – Characterization of Cu-Gr								
progress	6 – Integration into GPE TV								
	7 – Characterization								
	8 – Reliability Testing								

Light blue: Material design Dark blue: System design Light Yellow: Current time window

7. Schedule

Industry Advisory Board (IAB) November 2019

Georgia Tech

Georgia 8. Summary and Future Work

Summary

- Thermal analysis of glass-panel embedded package
- Proposal of magnetically aligned, electroplated Cu-Gr composites for low-CTE, high thermal conductivity, low thermal interface resistance

Future Work

- Thermomechanical analysis of glass-panel embedded package
- Demonstration of magnetically-aligned Cu-Gr composite material
- Integration of Cu-Gr composite material into GPE test vehicle
- Characterization and reliability testing of composite material