

Model Development for Flexible Hybrid Electronics Process Design Kit (FHE-PDK)

Sridhar Sivapurapu and Nahid Aslani Amoli Dr. Sitaraman and Dr. Swaminathan

Industry Advisory Board (IAB) November 2019

Georgia Acknowledgements

 This material is based, in part, on research sponsored by Air Force Research Laboratory under agreement number FA8650-15-2-5401, as conducted through the flexible hybrid electronics manufacturing innovation institute, NextFlex. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.
 This work is also supported in part by Semiconductor Research Corporation (SRC) and the Texas Analog Center of Excellence (TxACE) under task 2712.024.

Georgia FHE Design Flow and Components Included in PRC Confidential PDK 1.0

Industry Advisory Board (IAB) November 2019

Bending Test Setup

- All components underwent either tensile bending (a), compressive bending (b), or both
- An example of a component (microstrip transmission line) undergoing both compressive (left) and tensile (right) bending using adaptive curvature bending

*S. Sivapurapu, R. Chen, C. Mehta, Y. Zhou, X. Jia, M. L. F. Bellaredj, P. Kohl, T. Huang, S. K. Sitaraman, M. Swaminathan, "Multi-physics Modeling Characterization of Aerosol Jet Printed Transmission Lines," 2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Reykjavik, 2018, pp. 1-4.

Industry Advisory Board (IAB) November 2019

Georgia Tech

Microstrip Transmission Line Dimensions

Fabricated and Model Dimensions

PRC Confidential

- The SP ML model was developed using a Gaussian Process Regression (GPR)
- The data was collected using Latin Hypercube Sampling (LHS)
- The data is trained to the RLGC parameters of the line, which are then converted to S-Parameters
 - The length can be set by the user since the RLGC parameters are length independent

Georgia

Tech

Measurement Results Fabricated Samples and Model

of the range listed in the table

S. Sivapurapu, C. Mehta, R. Chen, Y. Zhou, X. Jia, M. L. F. Bellaredj, P. A. Kohl, S. K. Sitaraman, and M. Swaminathan, "Multi-physics Modeling Characterization of Aerosol Jet Printed Transmission Lines," 2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Reykjavik, 2018, pp. 1-4.

Industry Advisory Board (IAB) November 2019

Georgia

Tech

Georgia Tech

Power Inductor Dimensions

Fabricated and Model Dimensions

Parameter	Value		T	Parameter	Range	
Substrate Length (I _{substrate})	65 mm	I _{feed}	↓ I _{transition}		Minimum	Maximum
Substrate Width (w _{substrate})	25 mm	W _{feed}		Frequency (MHz)	1	100
Inductor Side Length (I _{Ind})	16.6 mm			Inner Turn Side Length (mm)	2	6
Inductor Line Width (w _{Ind})	500 µm			Trace Width (μm)	250	750
Inductor Line Spacing (s)	500 µm	_{substrate}	$\downarrow \longrightarrow \downarrow \\ Direction 2 \qquad \qquad \downarrow \qquad \qquad \downarrow$	Trace Spacing (µm)	250	750
Feed Length (I _{feed})	20.75 mm	W _{substrate}		σ (S/m)	5 x 10 ⁵	3 x 10 ⁷
Feed Width (w _{feed})	760 µm		10/	Trace Thickness (μm)	5	20
Transition Length (I _{transition})	4.8 mm		⊻¥ 4 +	Number of Turns	4	7
Number of Turns	7			Panel Separation (mm)	15	30
 The same Ka substrate and used for the r line are used inductor 	pton polyim I copper gro nicrostrip ti for the plan	nide ound plane ansmission har spiral				BI

- The conductor is Dupont 5025 (same as the SP microstrip transmission line)
- The model is built using GPR (similar to transmission line) Industry Advisory Board (IAB)

Industry Advisory Board (IÁB) November 2019

Georgia Tech

- Good correlation is found with between the simulation and measurement when the panel separation is large
- When the panel separation reaches the minimum measured value, the difference is more noticeable due to the nonlinear strain distribution along the length of the conductor
 - The impact increases more with the inductor due to more paths experiencing the nonlinear strain distribution → Integration between mechanical and electrical simulations is critical

- Cyclical bending has a large impact on the performance of these inductors (inductance decreases while resistance increases)
- The normalized resistance is ~28

 Ω and the normalized inductance is
 *S. Sigapurapu, R. Chen, C. Mehta, Y. Zhou, M. L. F. Bellaredj, X. Jia, P. Kohl, T. Huang, S. K. Sitaraman, M. Swaminathan, "Multi-physics Modeling & Characterization of Components on Flexible Substrates," in *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 9, no. 9, pp. 1730-1740, Sept.

Industry Advisory Board (IAB) November 2019

Georgia Institute of Technology^{2019.}

Georgia Model Results Tensile Bending for Power Inductor

HFSS

GPR

80

80

100

GPR

HFSS

Parameter	Value		
Frequency	1-100 MHz		
Inner Turn Side Length	3.1 mm		
Trace Width	500 μm		
Trace Spacing	500 μm		
Trace Conductivity	1.8x 10 ⁶ S/m		
Trace Thickness	10 µm		
Number of Turns	7		
Panel Separation	25 mm		

• The dimensions used for this model are the same dimensions as the measured inductor with a panel separation of 25 mm

100

Coplanar Waveguide Dimensions

Fabricated and Model Dimensions

и	L2	Dimension Substrate Thickness	Kapton Fabricated/Designed PET Fabricated/Designed		ted/Designed	
Le Constantino de La		(h)	5 m	5 mil		
u II.	Lz open shore	Substrate Length	196.418	196.418 mm		
		Substrate Width	14.82 mm,	14.82 mm/15 mm		
		Trace Width (W)	762.07 μm/750 μm	805.41 μm	n/750 μm	
		Separation (S)	106.68 μm/125 μm	42.03 μm/125 μm		
		Trace Thickness (t)	11 μm/10 μm	11 μm/10 μm		
	Contraction of the second seco	Surface Roughness	1 μm/2 μm	1 μm/2 μm		
		Characteristic Impedance (L2)	62.99 Ω/66.89 Ω	49.64 Ω/	70.82 Ω	
Kantar		Length (L2)	166.37 mm/166.63 mm	166.37 mm/166.63 mm		
καριοπ			Parameter	Range		
	 Similar to the previous models, a GPR is used to create the CPW model Model created in 2 sections: 			Minimum	Maximum	
			Conductor Width (w)	150 μm	900 µm	
			Conductor Thickness (t)	500 nm	20 µm	
Substrate E			Gap (g)	10 µm	250 μm	
Coplanar Waveguide (CPW)			Substrate Height (h)	0.5 mils	6.5 mils	
	Backside Gr	ound Plane and	ϵ_r	1	5	
Line Length	Tra <mark>nsmissio</mark>	n Line	tanδ	0.001	0.1	
	σ (S/m)	5 x 10 ⁵	6 x 10 ⁷			
	Frequency	10 MHz	8 GHz			

Industry Advisory Board (IAB) November 2019

Georgia Tech

Coplanar Waveguide Results

Measured and ML Model

 The measurement were completed with panel separations between 40 mm and 140 mm

N. Aslanden dashedurliner represents. the flate measurement," 2019 IEEE 69th Electronic Components and Coplanar Waveguide Transmission Lines: Multi-physics Modeling and Measurement," 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019, pp. 249-257.

Georgia Tech

November 2019

Patch Antenna Dimensions

Fabricated Sample and Model

Georgia Tech

Georgia Tech

Measured Results

Fabricated Samples and Model Correlation

Industry Advisory Board (IAB) November 2019

Georgia

Tech

Georgia Tech

- FHE-PDK 1.0 was created by a collaborative team consisting of HPE Labs, Georgia Tech, Stanford, UCSB, WMU, and Cadence
- Project was completed in April 2019 with final review in August 2019
- Includes the components shown in previous slides as well as resistors and capacitors
- Currently works with multiple software platforms from Cadence and Mentor Graphics
- The framework used to create the inductor, transmission lines, and antennas will be critical for moving forward to include other components
 - RF couplers, antenna arrays, etc.