



# Design and Demonstration of Ultra-thin Glass Panel Embedding Packages for RADAR Applications

Students: Tailong Shi, Siddharth Ravichandran Faculty: Dr. Vanessa Smet, Dr. Fuhan Liu, Dr. Mohan Kathaperumal

Industry Advisory Board (IAB) November 2019



Georgia Tech Acknowledgements

**Research Centers: Package Research Center** 

Liaisons: Nagase, Schott, Ajinomoto

| Geor<br>Te           | Georgia 1. Research Objectives              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                         |
|----------------------|---------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| • D<br>Ei            | esign ar<br>mbeddi                          | nd demonstrating<br>ng(GPE) Packa   | tion of ultra-t<br>iges for RADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hin, hi <mark>gh Performance Gl</mark> a<br>R Applic <mark>ations.</mark>                                | ass Panel                                                               |
|                      | Radar                                       | ixer<br>module with (               | PRC Confidential       ation of ultra-thin, high Performance Glass Panel<br>ages for RADAR Applications.       Mold Compound       Fan-out Area       Chip       Fan-out Area       Solo um       Miniaturized package architecture<br>for lowest system loss       O.65 dB       Electrical discontinuities in die-to-<br>package interconnection       Modeling and design of embedded chip<br>interconnections with minimum loss       0.2-0.5 dB       2 >500 um warpage       Package warpage after thermal<br>debonding due to CTE mismatch       Demonstrate low warpage ultra-thin GPE<br>packages |                                                                                                          |                                                                         |
| Parameter Objectives |                                             | Prior Art                           | Challenges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tasks                                                                                                    |                                                                         |
| Miniatu              | urization                                   | <200 um thickness                   | >500 um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | Design and demonstrate package                                          |
|                      | Miniaturization<br>T-line<br>loss<br>System | < 0.2 dB/mm                         | 0.30 dB/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Miniaturized package architecture for lowest system loss                                                 | architecture with minimum package<br>thickness                          |
| Performa             | System<br>Insertion<br>Ioss                 | 0.3-0.5 dB                          | 0.65 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                         |
|                      | System<br>return<br>Loss                    | < -20 dB                            | -16 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Electrical discontinuities in die-to-<br>package interconnection                                         | Modeling and design of embedded chip interconnections with minimum loss |
|                      | TPV loss                                    | >0.8 dB                             | 0.2-0.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |                                                                         |
| Demonstration        |                                             | < 100 um warpage<br>on 2 inch panel | >500 um warpage<br>on 6 inch wafer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Package warpage after thermal<br>debonding due to CTE mismatchDemonstrate low warpage ultra-<br>packages |                                                                         |
| Industry Ad          | lvisory Boar                                | rd (IAB)                            | Georgia Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | stitute of Technology                                                                                    | 3                                                                       |



# Georgia 2. Strategic Need







#### RADAR Applications



Wire Bonding Tolerance of bond wire parasitic up to ± 15%

Flip-chip Lower loss than wire bonding

eWLB Better electrical performance than flip-chip. Flexible for antenna integration.

#### Frequency for automotive radar module: 24GHz → 77GHz

#### Frequency for 5G MEMS cell applications: 3.3GHz → 40GHz



#### Also, emerging applications: RF GaN...



- Small z-height
- Possible direct chip cooling
- Ease of TPV formation
- Low loss enabled by ultra-short signal path
- Lower warpage than EMC
- Low cost from large panel process

Need for low loss ultra-thin packages





| Radar M         | odule                  | Freescale<br>TMTT 2012     | Infineon<br>RFIC 2012       |  |  |
|-----------------|------------------------|----------------------------|-----------------------------|--|--|
|                 |                        |                            |                             |  |  |
| Packa           | age                    | RCP                        | eWLB                        |  |  |
|                 | Size                   | 6mm x 6mm                  | 6mm x 6mm                   |  |  |
| Winiaturization | Thickness              | N/A                        | > 500 um                    |  |  |
| Performance     | Package<br>inductances | <50% of wirebond solutions | <50% of flip-chip solutions |  |  |
|                 | Package loss           | < 1 dB                     | 0.65 dB                     |  |  |
| Domonstration   | Warpage                | > 500 um                   | > 500 um                    |  |  |
| Demonstration   | Die-shift              | N/A                        | >10 um                      |  |  |

# Georgia 4. Technical Approach Beyond Prior Art

**PRC Confidential** 





Industry Advisory Board (IAB) November 2019

Georgia Tech

### **5. Results**

Georgia Tech

### 5.1 Design and demonstrate package architecture with minimum package thickness



Process flow for ultra-thin GPE packages

5.1 Design and demonstrate package architecture with minimum package thickness



## Demonstration: Ultra-thin GPE with ABF



**5.** Results

Georgia

Tech

| Parameter                              | Value           |  |  |  |  |  |
|----------------------------------------|-----------------|--|--|--|--|--|
| Glass cavity thickness                 | 100 um          |  |  |  |  |  |
| Glass carrier thickness                | 1 mm            |  |  |  |  |  |
| ABF thickness                          | 30 um           |  |  |  |  |  |
| Die thickness                          | 100 um          |  |  |  |  |  |
| Die size                               | 7.2 mm x 7.2 mm |  |  |  |  |  |
| Temporary bonding film thickness       | 10 um           |  |  |  |  |  |
| Temporary bonding film A release temp. | 170 C           |  |  |  |  |  |
| Temporary bonding film B release temp. | 200 C           |  |  |  |  |  |
|                                        |                 |  |  |  |  |  |

Specification

Thickness<140 um

GPE after carrier removal

Industry Advisory Board (IAB) November 2019



# RDL - Plating, P.R. Strip & Seed layer etching





- Smaller Cu pads  $\rightarrow$  lower parasitic effect  $\rightarrow$  lower loss
- Lower interconnection loss can be achieved by high precision processing with minimal variations in line and via geometries on glass substrates

Georgia Tech

5. Results

Georgia

Tech

5.2 Modeling and design of embedded chip interconnections with minimum loss



Industry Advisory Board (IAB) November 2019



Georgia 5. Results 5.3 Demonstrate low warpage ultra-thin GPE packages

# PACKAGING

Georgia Tech

## **Mechanical Modeling for Warpage Optimization**





- Demonstration of ultra-thin GPE packages below 140 um thick
- Demonstration of precise microvia drilling for low-loss interconnects
- Modeling and process optimization for warpage reduction
- Next step: Design, demonstration and characterization of ultra-thin GPE packages with functional dies for RADAR applications

| Tacke            | Sub-Tasks                                                             | 2019    |         |         | 2020    |         |
|------------------|-----------------------------------------------------------------------|---------|---------|---------|---------|---------|
| Tasks            |                                                                       | Sep-Oct | Nov-Dec | Jan-Feb | Mar-Apr | May-Jun |
| Modeling         | Optimization of modeling                                              |         |         |         | -       | •       |
| Design           | Design optimization of<br>RADAR module with<br>ultra-thin GPE package | <b></b> |         |         |         |         |
| Demonstration    | Fabrication of RADAR<br>module with functional<br>die                 |         |         | •       |         |         |
| Characterization | High frequency<br>characterization of<br>RADAR module                 |         |         |         | →       |         |
|                  |                                                                       |         |         |         |         |         |