

Bandpass Filters for D-band Application

Students: Xiaofan Jia, Muhammad Ali Faculty: Madhavan Swaminathan

Industry Advisory Board (IAB) November 2019

Georgia Tech

RF Filters Role and Requirement for RF Filter

Requirements for high performance RF filters for RF Front-End

Shortcomings of traditional filter

- Cannot meet the demand for higher integration
- Cannot meet the demand for higher frequency

Our Objectives:

Georgia

- Look for new high-performance platforms for RF filters in D band.
- Design Passive Filter with lower insertion loss and sharper roll-off.
- Further integrate passive RF Filters into package

D-band Bandpass Filter : Related Work

High performance Rectangular Waveguide Bandpass Filter

		[1]	[2]		
Te	echnology	Silicon micromachined technology	High speed CNC milling fabrication		
	Topology	Chip alignment hole SOI chips Waveguide port			
Cent	er frequency	144.75 GHz	139.2GHz		
	FBW	5.2% (7.5 GHz)	8.3% (11.6 GHz)		
Ins	sertion Loss	Average of 0.5 dB at passband	Minimum insertion loss -1.0dB		

[1] Campion, James, et al. "An ultra low-loss silicon-micromachined waveguide filter for D-band telecommunication applications." 2018 IEEE/MTT-S International Microwave Symposium-IMS. IEEE, 2018.

[2] Cheng, Wang, et al. "140GHz waveguide H ladder bandpass filter." 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Vol. 2. IEEE, 2012.

Industry Advisory Board (IAB) November 2019

Georgia Tech

D-band Bandpass Filter : Related Work

Substrate Integrated Wave (SIW) Guide Bandpass Filter

[1] Khalil, Ali H., et al. "Quasi-elliptic and Chebyshev compact LTCC multi-pole filters functioning in the submillimetric wave region at 150 GHz." IEEE Transactions on Microwave Theory and Techniques 58.12 (2010): 3925-3935.

Georgia

D-band Bandpass Filter : Related Work

Substrate Integrated Wave (SIW) Guide Bandpass Filter

	[2]	[3]				
Technology	single-circuit layer using LTCC technology	BCB and Glass dielectric cavity etched on the traditional low- resistivity silicon (LRSi) with through dielectric via (TDV)				
Topology	0. 79m 1. 2mm					
Center frequency	140 GHz	159.69 GHz (Simulation)				
FBW	13.03% (18.3GHz)	12.5% (20 GHz) (Simulation)				
Insertion Loss	1.913 dB at 140GHz	1.5 dB (Simulation)				

[2] Wong, Sai Wai, et al. "Electric coupling structure of substrate integrated waveguide (SIW) for the application of 140-GHz bandpass filter on LTCC." IEEE Transactions on Components, Packaging and Manufacturing Technology 4.2 (2013): 316-322..
[3] Liu, Xiaoxian, et al. "Wideband Substrate Integrated Waveguide Bandpass Filter Based on 3-D ICs." IEEE Transactions on Components, Packaging and Manufacturing Technology 9.4 (2018): 728-735.

Georgia Tech

Georgia D-band Bandpass Filter : Related Work

	[1]	[2]		
Technology	Suspended BCB membrane structure	Thin BCB dielectric layer deposite on the Si substrate		
Topology	M2 $53 \ \mu m$ Port 1 $25 \ \mu m$ $60 \ \mu m$ $320 \ \mu m$ $1 \ 20 \ \mu m$ $1 \ 1 \ 20 \ \mu m$ $1 \ 20 \ \mu m$ $1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$			
Center frequency	126.8 GHz	140 GHz		
FBW	13.9 % (17.63 GHz)	6% (8.4 GHz)		
Insertion Loss 4 dB at mid-band		4.3 dB		

[1] Li, Rui, et al. "A 135GHz slotline bandpass filter using silicon/membrane technology." 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC). IEEE, 2012.

[2] Shi, Shengqi, et al. "Design of 140GHz Narrow Band-pass Planar Filters Based on Open Loop Resonators." 2019 International Conference on IC Design and Technology (ICICDT). IEEE, 2019. Georgia Tech

electric Vias	opper (M4)	Layer		Details			
		М4 (Тор)	Microstrip Passive Components (8um)				
Dielectric-4		Dielectric-4	Taiyo Zaristo (28+28+15=71-μm)				
Diele	octric-3	M3	GND, Via Antipads, Dicing Clearance				
Glass Core Dielectric-2 Dielectric-1 Copper (M1)		Dielectric-3	Taiyo Zaristo (15-µm)				
		Core-Glass	AGC EN-A1 (100-μm), TGVs				
		Dielectric-2	Taiyo Zaristo (15-µm)				
		M2	GND, Via Antipads, Dicing Clearance				
		Dielectric-1	Taiyo Zaristo (28+28+15=71-μm)				
		M1 (Bottom)	Microstrip Passive Components				
Footuro	Dimensions (um)	Material		Dk	Df		
Min 1/S		Glass (AGC EN-A	L)	5.4	0.005		
Conner Thickness	25/25	Polymer (Aiinomoto ABI	F GL102)	3.3	0.0044		
Copper Inickness8-10Via-in-Via Dia.100							
		Polymer (Taiyo Zari	Polymer (Taiyo Zaristo)		0.0025		

Georgia Tech

Common Topologies for Microstrip BPF

	Combine filter	Interdigital BPF	Coupled line BPF	Hairpin BPF
Common choices for Microstrip BPF	$\begin{array}{c} C_{L_{1}} \stackrel{\frown}{=} C_{L_{2}} \stackrel{\frown}{=} C_{L_{3}} \stackrel{\frown}{=} C_{L_{3}} \stackrel{\frown}{=} C_{L_{n}} \stackrel{\frown}{=} C_{L_$			

Specifications of Microstrip BPF

Center Frequency	140GHz		
BW-3dB	14GHz (10% 133-147GHz)		
Insertion Loss	<4dB		
Roll-off (BW20dB/BW3dB)	<3 (BW20dB from 120-160GHz)		

Considerations for Choosing Topology

- Lumped capacitor is not available in such a high frequency range
- Vias will have significant radiate effect in this frequency
- Unwanted coupling is easier to appear in such high frequency range
- There will be more loss for microstrip line than lower frequency

Georgia

Tec

Simulation Result of Dielectric Microstrip BPF

Coupled Line Bandpass Filter and Frequency Response

Terminal S Parameter Plot 1 HFSSDesign1 🔺 0.00 -5.00 Curve Info dB(St(Feed1 T1,Feed1 T Setup1 : Sweep -10.00 | cline1='305um' | cline2='300un dB(St(Feed2_T1_Feed1_T1) Setup1 · Sween cline1='305um' L cline2='300 -15.00 Х 140.3000 -1.2613 <u>m</u>3 m1 ⊊ -20.00 m2 148.2000 -1.4150 144.3000 -21.1326 -25.00 -30.00 -35.00 -40 00 100 00 120 00 140.00 180.00 160 00 200.00 Freq [GHz]

Based on the considerations mentioned before, this work choose simple coupled line BPF as a staring point.

Performance:

This BPF shows low insertion loss (-1.2dB minimum) and high return loss (under - 20dB at passband.

Problems unsolved yet:

Impedance mismatches at about 120 GHz

Georgia

Challenges

Limited by resolution, it's difficult to fabrication smaller spaces between lines.

Impedance mismatches at about 120GHz, which needs further optimization

Georgia

		2019		2020	
		Q3	Q4	Q1	Q2
<mark>In progre</mark>	Design and optimize microstrip structures and coupled lines				
	Fabrication				
	Measurement and Analysis				

Light Yellow: Current time window

Timeline

Industry Advisory Board (IAB) November 2019

Georgia Tech

Georgia Tech Acknowledgements

This work was supported in part by ASCENT, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

Liaisons

Ashish Agrawal (Intel) Henning Braunisch (Intel) Brian Doyle (Intel) Xiaoxiong Gu (IBM) Nazila Haratipour (Intel) Ravi Pillarisetty (Intel) KUN SI (EMD Perform. Matls.) Shriram Shivaraman (Intel)

Dan Blass (Lockheed Martin) Tsu-Hsi Chang (DARPA) Tanay Gosavi (Intel) Augusto L. Gutierrez-Aitken (Northrop Grumman) Jack T. Kavalieros (Intel) Willy Rachmady (Intel) Abhishek A. Sharma (Intel) Seung Hoon Sung (Intel)