

Flex on Glass for mmWave Applications

Faculty: Prof. Swaminathan, Dr. Fuhan Liu

Student: Sridhar Sivapurapu

Sponsors: Schott (Martin Lutz) Taiyo Ink (Takenori Kakutani)

Outline

- □ Research Objectives
- Prior Work
- □ Application Automotive Radar
- Individual Component Analysis
- □ Future Work
- Projected Timeline

PRC Confidential

Research Objectives

- Design, fabricate, and integrate passives (transmission line, antennas, couplers, etc.) and active components (ICs) onto flexible glass substrates (Schott AF32)
 - Stack-ups will include metallization (screen printing, inkjet printing, and aerosol jet printing) on bare glass as well as layers of build up materials to use subtractive etching and semi-additive processing
- □ Focus primarily on mmWave applications

□ Automotive

Prior Work

PRC Confidential

Georgia Tech

- Direct metallization (screen printing) onto Kapton polyimide (Pyralux AP and Kapton HF) and PET
 - Transmission Lines (Microstrip and CPW), Power Inductors, and Patch Antennas
- Components underwent both tensile (a) and compressive (b) bending using adaptive curvature bending

Ref: S. Sivapurapu, C. Mehta, R. Chen, Y. Zhou, X. Jia, M. Bellaredj, P. Kohl, S. Sitaraman, M. Swaminathan, "Multi-physics Modeling Characterization of Aerosol Jet Printed Transmission Lines"

Georgia Tech

Ref: S. Sivapurapu, C. Mehta, R. Chen, Y. Zhou, X. Jia, M. Bellaredj, P. Kohl, S. Sitaraman, M. Swaminathan, "Multi-physics Modeling and Characterization of Components on Flexible Substrates"

Nov 7-8, 2019

5

Prior Work (cont.)

ng, good

- Mismatch between measurement and simulation occurs to tool limitation to account of positional strain inside of EM simulation
 - Occurs at small panel separation (maximum bending)

Ref: S. Sivapurapu, C. Mehta, R. Chen, Y. Zhou, X. Jia, M. Bellaredj, P. Kohl, S. Sitaraman, M. Swaminathan, "Multi-physics Modeling and Characterization of Components on Flexible Substrates"

Georgia Tech

- Begin with Taiyo Stretchable Ag Conductive Paste both directly on glass using Screen Printing
- □ Low temperature processing (90°C)
- Major advantage compared to other Ag Conductive Pastes is minimizing change in resistance while stretching compared to other products
 Stretch testing completed up to 20% elongation without fracture

PRC Confidential

Georgia Institute of Technology

8

9

- Expected Conversion Gain: -5 dB at 150 MHz (cutoff frequency for baseband processing)
- \square R is 200 Ω and C is 5 pF
- Diodes will be off-the-shelf Schottky Diodes
- □ RF Input expected to be -30 dBm

PRC Confidential

Nov 7-8, 2019

PRC Confidential

Patch Antenna – Adaptive Curvature Bending – Radiation Pattern

Flat Peak Gain: 11.2 dBi

Changing the panel separation significantly changes the radiation pattern

Georgia Institute of Technology

PRC Confidential

Patch Antenna – Adaptive Curvature Bending Radiation Pattern

Flat Peak Gain: 11.1 dB

At small enough panel separations, the Yagi Antenna changes from End-fire to Broadside

Future Work

- Begin fabrication on 30 um Schott AF32 glass with both direct metallization of glass (printing) as well as with build up layers
- Measure individual components (antenna, transmission line, coupler, etc.)
- □ Integrate components for full system analysis before chip attach
- □ Chip attach and integrate system (Chip last module)

Georgia Tech

Timeline for Proposed Work

	2019	2019 2020					2021		
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
Individual Component									
Design									
Individual Component									
Fabrication									
Individual Component									
Characterization (including									
bending)									
Component and System									
Level Design									
System Level Fabrication									
Full System Level									
Characterization									

Light Blue: Component Level Design Dark Blue: System Level Integration (Chip Last)

