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We study the transition from fluid at rest to turbulence in a rotating tank. The energy is transported by

inertial wave packets through the fluid volume. These high amplitude waves propagate at velocities

consistent with those calculated from linearized theory [H. P. Greenspan, The Theory of Rotating Fluids

(Cambridge University Press, Cambridge, England, 1968)]. A ‘‘front’’ in the temporal evolution of the

energy power spectrum indicates a time scale for energy transport at the linear wave speed. Nonlinear

energy transfer between modes is governed by a different, longer, time scale. The observed mechanisms

can lead to significant differences between rotating and two-dimensional turbulent flows.
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The physics of flows in rotating systems is important for
the understanding of astrophysical, atmospheric, geophysi-
cal, and engineering systems. It is well established that,
when the rotation of the system is high enough, a flow
becomes quasi-two-dimensional (quasi-2D) [1,2]. In par-
ticular, rotation has a dramatic effect on turbulent flows in
three dimensions (3D), converting them into quasi-2D
turbulent fields. Such steady [3], as well as decaying [4],
flows have been extensively studied, with the similarities
and dissimilarities of their characteristics to those of 2D
turbulence noted in both experimental [5] and theoretical
[6] studies. Much less work has been dedicated to studying
the evolution of rotating turbulence, its response to abrupt
changes in energy injection rates, and the processes gov-
erning energy and momentum transfer in the medium.
These questions are of importance when considering the
dynamics and statistics of natural flows, such as atmos-
pheric flows, that are, typically, driven by a fluctuating
energy source.

Consider a flow field in a 3D volume that rotates with an
angular velocity � (� ¼ �z). For typical velocity and
length scales U and L, and viscosity �, there are two
dimensionless numbers that characterize the flow. The
Reynolds number Re� UL

� , which quantifies the ratio

between the magnitudes of the inertial and viscous terms
in the Navier-Stokes (NS) equation, and the Rossby num-
ber Ro� U

2L� , which quantifies the ratio between the

inertial and Coriolis terms. When Re � 1 and Ro � 1,
Coriolis acceleration dominates both inertial and viscosity
terms. Under these conditions, gradients of the velocity
field parallel to � are small, and in this sense the flow
becomes quasi-2D. In the limit Ro ! 0, the inertial term is
completely neglected, and the equation of motion becomes
linear. In this approximation, the Coriolis force balances
the pressure gradients and generates a finite restoring force
that resists ‘‘deformations’’ of the velocity field in the z
direction [7,8]. The velocity field, thus, becomes ‘‘elastic’’
and supports the propagation of inertial waves. Such waves
were derived for the case of small and slow perturbations to
a fluid that rotates as a solid body (fluid at rest in the

rotating system), and the magnitude of their group velocity
was shown to be given by jvgðkÞj ¼ 2�=k, where k is the

wave number [7,8]. Inertial waves emitted from a weak
point source were observed experimentally [9] and numeri-
cally [10], and the traces of their resonant modes were
recently measured in decaying turbulent fields in a rotating
tank [11].
It was recently suggested [12] that nonlinear resonant

interactions of inertial waves, that transfers energy to large
scales, is responsible for the buildup of a turbulent field
with a k�3 energy spectrum at large scales. Such an energy

spectrum is inherently different from the k�5=3 spectrum,
obtained from the inverse energy cascade (local in k) in 2D
turbulence. However, inertial waves were derived within a
linearized theory and studied only for small (and slow)
localized perturbations to fluid at rest. The propagation of
inertial wave packets within an existing, energetic flow
field has never been measured. It is an open question of
how and how much energy they can transfer to the entire
fluid volume before nonlinearities destroy them. We sug-
gest that these issues are of special importance when con-
sidering rotating systems that are driven by energy bursts.
We present direct measurements of inertial waves in a

rotating system, during the transition to turbulence. We
show that, depending on the system’s parameters, these
waves can propagate to large distances before nonlinear
effects take place. During these times, the waves serve as
themainmechanism of energy transport parallel to the axis
of rotation, and their linear dispersion relation is main-
tained even at large Reynolds numbers (of order 104) and
Rossby numbers Ro� 1. We further demonstrate that the
evolution of the flow field towards a quasi-2D turbulent
field is dominated by two different time scales: one that
characterizes the spatial transport of energy by inertial
waves and a second that is associated with nonlinear
energy transport to large spatial scales.
Our experimental system (Fig. 1) consists of a Plexiglas

cylinder, of 80 cm diameter and 90 cm height (the z
direction), placed on a rotating table (� ¼ �z up to
16 rad=s). The tank is filled with water and covered with
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a transparent flat lid that serves as the upper boundary of
the fluid volume. The flow is driven by an injection device
that covers the entire base of the cylinder. It consists of
248 flexible silicon tube outlets (0.8 mm diameter) ar-
ranged every 4 cm in a hexagonal grid and 73, 6 mm
diameter inlets arranged in a hexagonal grid, with 7 cm
spacing, that overlaps the outlet grid. A 2.5 kW positive
displacement pump circulates the water, at flow ratesQ, up
toQmax ¼ 3 l=s, resulting in a maximum injected power of
Pmax ¼ 300 W. The distribution of the sources results in
energy injection at a central wavelength of about 5 cm with
negligible power at larger scales. The water is seeded with
50 �m diameter polyamide particles, and sections of the
cylinder at variable height, h, from the bottom (10< h<
80 cm), are illuminated with two 1.5 W horizontal laser
sheets of 3 mm thickness. Images of the light scattered
from the particles are acquired by a 30 fps, 1 Mpix camera
rotating with the system. These images are used for particle
image velocimetry (PIV) measurements of the horizontal
velocities within the illuminated section.

At high rotation rates, a region of quasi-2D flow, with
negligible divergence in the x; y plane, is formed at the
upper part of the cylinder (where Ro is the smallest) [13].
When this region is continuously fed by energy injected
from the bottom of the tank, it evolves into a quasi-2D
turbulent field, similar to previously studied rotating
steady-state flows generated by a vibrating grid [3] and
other energy injection devices [13,14]. In the current work
we focus on the early stages of the transition from solid
body fluid rotation to turbulence. The system is, thus, first
brought to a solid body rotation, and the injection system is
then activated (t ¼ 0) at a set flow rate. Starting at t ¼ 0,
PIV measurements are performed at a given height h. The
measured horizontal velocity fields [uðx; yÞ and vðx; yÞ)]

are analyzed to obtain the vorticity, kinetic energy density,
and energy power spectrum at successive times t.
Figure 2 presents snapshots of the kinetic energy density

Eðx; yÞ ¼ u2ðx; yÞ þ v2ðx; yÞ measured at height h ¼
56 cm, for increasing t. The fluid is static at small t
[Fig. 2(a)], and it is only after a delay of �3 s that flow
is initiated at h over the entire cross section [Fig. 2(b)]. As
time progresses [Fig. 2(c)], the intensity of the flow in-
creases, while the typical spatial scales remain small [as
in Fig. 2(b)]. The flow field continues to vary slowly
[Fig. 2(d)], and only after time t of order 102 s is a steady
turbulent flow obtained [Fig. 2(e)].
The time evolution (Fig. 3) of the (azimuthally aver-

aged) energy power spectrum EðkÞ at h has a distinct
signature. The energy is not populated simultaneously at
all injected wave numbers. Instead, two different types of
‘‘fronts’’ (in the k-t plane) are responsible for the transport
and distribution of the turbulent energy. The first (dotted

FIG. 2 (color online). Five snapshots of the kinetic energy
density field E ¼ v2 þ u2 measured at different times (t ¼
1:3, 3.3, 4.7, 10, and 100 s) for (a)–(e) after the initiation (t ¼
0) of energy injection. Energy appears over the entire cross
section at t ¼ 3:3 s (b). The amount of energy increases, while
the typical length scale slightly decreases (c). Some rearrange-
ment of eddies is visible at t ¼ 10 s (d), and it is only after a time
of order tens of seconds that a steady turbulent field is achieved
(e). The measurements were obtained for h ¼ 56 cm, � ¼
9:4 rad=s, and P ¼ 6 W. Each cross section is 80 cm in diame-
ter. A linear color bar in ðcm=sÞ2 is used for (a)–(d), whereas in
(e) its range is expanded by a factor of 3.
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FIG. 1 (color online). The experimental system. A covered,
cylindrical transparent water tank is placed on a rotating table
(�max ¼ 16 rad=s). Water is injected and drawn in through the
injection device (see text) at the bottom of the tank. Laser sheets
illuminate a cross section at a variable height h, and a corotating
camera grabs images of the light scattered from 50 �m diameter
polyamide particles suspended within the water.
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line) indicates that, although the entire spectrum was in-
jected simultaneously, each wave number k has a distinct
(and different) arrival time at a given plane in z. The arrival
time �1ðkÞ increases linearly with k. This initial stage spans
a few seconds, after which the variations in the spectrum,
as well as in the total energy, are much slower. �1ðkÞ is
defined as the time at which the energy entrained in each
mode EðkÞ increases at the highest rate (see inset in Fig. 3
for k ¼ 0:17 cm�1).

We have conducted experiments over a range of heights
(32 cm< h< 73 cm), rotation rates (6:3 rad=s<�<
14 rad=s), and energy injection rates (1:5 W<P<
45 W). Fronts similar to those presented in Fig. 3 appeared
in all of these measurements. Plotting �1ðkÞ versus k for
various heights and rotation rates yields a set of quasilinear
curves [Fig. 4(a)], from which it is observed that �1ðkÞ
decreases with � and increases with h, for each k. Fig-
ure 4(b) shows that scaling �1ðkÞ by h=2� leads to a data
collapse onto a linear curve of slope 0:9� 0:05 [Fig. 4(b)].
The collapse implies that �1ðkÞ is the traveling time of
waves from the source to the measurement plane at a vel-
ocity dictated by the linear dispersion relation [15]. Thus
the observed front in Fig. 3 marks the arrival of planar
inertial waves emitted from the injection plane to a given
measurement plane. In our experiments these planar wave
fronts travel in the range 30< vgðkÞ< 120 cm=s.

In Fig. 5, we fix h and � and vary the energy injection
rate P over the range 1.5–45 W [16]. Even though the

injected power spans over a decade, �1 is unaffected, an
additional indication of the linear nature of the waves. This
linear nature is somewhat surprising. The flow fields gen-
erated by the waves have high Reynolds numbers (esti-
mated using the velocity rms and the central injected length
scale) Re� 103, which are typical to turbulent flows. In
addition, Ro� 1, so it is far from obvious that nonlinear
terms in the NS equation can be neglected. We also see that
shorter waves propagate within a medium which is already
excited by the longer waves. For example, at t ¼ 3 s,
where Re of the flow in Fig. 3 is of order 103, the velocity
of the high k modes is unaffected by their propagation
through a medium that is already highly excited by the
lower modes. These waves can, therefore, not be regarded
as small and slow perturbations to a static fluid, but as a
more general mode of energy transport.
Once the front arrives at a given plane, sustained turbu-

lent motion develops. In order for turbulence to evolve
beyond the conditions transported by the front arriving at
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FIG. 3 (color online). A typical plot of the temporal evolution
of the energy power spectrum. A color map of the energy
spectrum EðkÞ (logarithmic color bar) as a function of the time
t from the initiation of energy injection. The spectrum does not
contain energy for the first few seconds, after which a linear front
is observed (marked with a dotted line), indicating a distinct time
�1ðkÞ for the ‘‘arrival’’ of each wave number k. The inset shows
the time evolution of Eðk ¼ 0:17Þ. The energy increases within
1 s, defining a time t ¼ �1ðkÞ (marked with dashed line) after
which it varies much more slowly. A second front can be
observed at small wave numbers (dashed line), defining a second
time �2ðkÞ, which decreases with k and indicates nonlinear
energy transfer from small to large scales. The purple triangles
mark the times at which the flow fields presented in
Figs. 2(a)–2(d) were measured. Experimental conditions were
as in Fig. 2.

FIG. 4 (color online). The arrival time of inertial waves.
(a) �1ðkÞ, measured for various heights and rotation rates yield-
ing a set of quasilinear curves. (b) Once �1 is rescaled by h=2�,
these data collapse onto a linear line of slope 0:9� 0:05. The
front is, thus, consistent with the traveling time of waves with
group velocity vg ¼ 2�=k from the injector to the measurement

plane. The measurement heights (in cm) and rotation rates (in
rad/s) are indicated in (b). Energy injection rate: P ¼ 12 W.
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time �1, nonlinear mode interactions must occur. Nonlinear
energy transfer is indicated by a second front, marked by
the dashed line in Fig. 3, at which EðkÞ increased sharply
with time. We define a characteristic, mode-dependent
time �2ðkÞ, marking the increase in EðkÞ. �2 decreases
with the wave number and is strongly dependent on the
Re (Fig. 5), thus indicating the nonlinear nature of the
underlying mechanism for wave interactions. This second
‘‘nonlinear’’ front marks the initial stages of the energy
transfer from small to large scales. Indeed, the typical
‘‘nonlinear time’’ for energy transfer across the spec-
trum—the eddy turnover time—should scale as ðvkÞ�1.
Our measurements indeed show (Fig. 5) that �2ðkÞ de-
creases with both k and v (v is taken to be the velocity
rms). More detailed measurements are required in order to
find the exact functional dependence of �2ðkÞ on k and v in
our system. Note that, even at times much longer than �2,
Eðk; tÞ still evolves in time and the steady-state spectrum
[e.g., Fig. 2(e)] is attained only at a much longer time scale
that is associated with the development of equilibrium
across the energy spectrum. This time scale has to be
determined by further study.

We, therefore, see that the energy transfer during the
initial stages of the buildup of the turbulent field is char-
acterized by two independent time scales �1ðkÞ and �2ðkÞ.
�1ðkÞ � h=vgðkÞ ¼ hk=2� is amplitude-independent and

associated with the propagation of inertial waves at the
linear group velocity from the energy source to the mea-
surement plane. The nonlinear time �2ðkÞ is associated
with energy transfer across the spectrum and is expected

to scale as �2ðkÞ � ðvkÞ�1. Thus, when k < ð�=hvÞ1=2 we
have �1ðkÞ< �2ðkÞ, and the flow will be dominated by
linear inertial waves, with no significant nonlinear effects.

The range of this region scales like h��k�2v�1 and, in
principle, could be extended by tuning the parameters of
the system. Within this range, inertial waves are the sole
energy transport mechanism, and temporal variations of
the energy source will be preserved, as the waves carry
them through the medium.
In summary, linear inertial waves both are capable of

carrying large amounts of energy over large distances and
persist for long times (in terms of the rotation period). The
dynamics of these waves should be taken into account
when considering turbulent buildup, or when studying
rapidly rotating systems, driven by an intermittent energy
source. In such systems, temporal and spectral properties
of the energy source will be transported to long distances
by inertial waves and will change only for times longer

than �2. It is known [17] that a k�5=3 spectrum can be
observed in rotating turbulent flows. It is, however, still an
open question of whether this spectrum always develops.
The above observations suggest that, when the typical time
of fluctuations in energy injection is short compared with
�2 and �1; the steady-state energy spectrum may well be

influenced by both the propagation of inertial waves and
their subsequent nonlinear interactions.
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FIG. 5 (color online). The effect of energy injection rate on �1
and �2. �1 (open symbols) and �2 (solid symbols) versus the
wave number k, measured at h ¼ 32 cm, � ¼ 11 rad=s, and
different injection rates P (squares: 1.5 W; circles: 6 W; tri-
angles: 45 W). The higher the power injected, the shorter �2 is,
as expected from a time that is governed by nonlinear interac-
tions. On the other hand, the linear time �1ðkÞshows no depen-
dence on P.
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