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NUMERICAL VALUES OF THE DATA PRESENTED IN FIG. 5

L [mm] ` [mm] λy UelL [kJ/m2] v [m/s]

63.13 22.12 1.98 7.09 8.87

69.01 35.14 2.17 8.9 9.64

63.5 16.98 1.75 5.81 7.45

61.44 11.35 1.69 4.28 5.31

23.54 5.88 1.66 1.89 1.63

23.36 5.54 1.69 2.08 1.8

25.01 11.39 1.99 3.2 6.03

30.53 12.12 1.94 3.12 5.87

28.05 14.92 2.10 3.78 7.03

Table I. The data used in Fig. 5
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DN GEL SMALL STRAIN RESPONSE

Figure S1. Stress-strain curve at small strains taken by averaging the curves of Fig. 1(b). The Young modulus E = 380± 40 kPa

is obtained via linear regression (red line). We estimate the shear modulus to be µ = E/3 = 130± 10 kPa.
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RESIDUAL STRAINS BEHIND A PROPAGATING CRACK
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Figure S2. Residual strains within the tail of a running crack. (a) The gel sheet at its rest state. (b) A snapshot of the running crack

under an imposed stretch of λy = 1.64. (c,d) Zoomed sections highlighted in the red boxes in (a,b). The dashed line in (c) marks

the approximate crack path in the non-stretched frame. (e) The residual Eyy strain within the tail of the crack extracted through

DIC of (c) and (d). White scale bars are 3 mm long.
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CTOD SCALING AT LARGE STRAINS

In the main text we have observed that dynamic cracks in double-network gels have a CTOD of the shape x ∼ |y|b,

where b = 1.64. Here we give a heuristic argument for how non-parabolic CTOD’s may arise due to large strain

elasticity.

The elastic response of an isotropic material to deformation is derived from a strain energy density e, which depends

on rotation invariants of the strain tensor. In 3D, there are three invariants [1]. Denoting the displacement of a point

in the reference frame by ui, and the strain tensor by Eij = 1
2 (∂jui + ∂iuj + ∂iuk∂juk), the first invariant is

I = Eii. Here i and j run over the three spatial coordinates (X,Y, Z) in the material rest frame, and we use the

Einstein summation convention. We will assume that the contribution of the second invariant to e is negligible, since

it is second order in Eij . The third invariant, which is related to volume changes, is a constant for incompressible

materials (a good approximation for gels). We therefore remain with e = e(I). To obtain the CTOD scaling we note

that one may construct a path independent integral around the crack tip, namely the J-integral [2, 3]

J =

∫
Γ

(e(I)dy − Sijnj∂Xuids) (S1)

where Γ is a contour surrounding a crack that lies along the negative X axis, Sij is the nominal stress tensor, nj is the

outward normal to the contour and ds is the arc length element. The path-independence of J amounts to the existence

of a 1/r singularity of the integrand as the radius r =
√
X2 + Y 2 approaches 0. Since both terms in the integrand

must scale in the same way (Sij ∼ ∂e/∂(∂jui)), the energy density scales as e(I) ∼ 1/r.

For simplicity, let’s assume the strain energy has a power-law dependence e(I) ∼ In. For incompressible materials

det(δij + ∂iuj) = 1, which translates to ∂iui + 1
2 (δijδkl∂iuj∂kul − δijδkl∂iuk∂jul) + det∂iuj = 0. The strain

invariant is therefore I = ∂iui + (∂iuk)2 = (∂iuk)2− 1
2 (δijδkl∂iuj∂kul− δijδkl∂iuk∂jul)−det∂iuj . The first term

in I is quadratic in the displacement gradient, and all others involve double and triple cross-products of displacement

gradient components. Close to the crack faces, ∂XuY becomes the most dominant component, and thus I ∼ (∂XuY )2.

Then,

(∂XuY )2n ∼ 1

r
(S2)

And hence uY ∼ (−X)1−1/2n or x ∼ y2n/(2n−1) where x and y are a lab frame coordinate system with origin at the

crack tip, and y = uY (X,Y = 0, Z). That is,

b =
2n

2n− 1
. (S3)

This expression for the CTOD power-law recovers the parabolic shape b = 2 for the Neo-Hookean case n = 1 [4]

and approaches b = 1 for large values of n. Our observed value of b = 1.64 would arise in this model for n = 1.28.

Long, Krishnan and Hui [5] solved analytically the fracture problem in the context of the Generalized Neo-Hookean

material model. This model is defined as e(I) ∼ ε−1{(1 + εn−1(I − 3))n − 1}, where ε and n are parameters.
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This model approaches the Neo-Hookean behavior for small strains or small ε. Their solution leads to a CTOD with

b = 2n/(2n− 1), the same as derived by the scaling argument above.

Both the power-law model e(I) ∼ In and the Generalized Neo-Hookean model are, to an extent, toy models for

nonlinear elasticity. To test whether the CTOD scaling changes in more realistic models, we solved for the displace-

ment fields surrounding a crack in an Arruda-Boyce material model using finite-elements software (Abaqus). Briefly,

the Arruda-Boyce model is defined by e(I) = µλ2
mf(

√
I/3/λm) where µ is an elastic modulus and the function

f →∞ when I → 3λ2
m (see [6] for the definition of f(·)). The latter property makes λm the maximal stretch that the

material can sustain.

We solved for the displacement fields surrounding a crack of length 35mm in a rectangular sample of L = 65mm

and W = 70mm. We assumed that µ = 100kPa, and applied a constant displacement of 21.1mm to the y edge of the

sample. Taking advantage of the symmetry of the problem, we solved it only in the upper half of the sample, assuming

zero displacement along the x axis, ahead of the crack tip. The solution used an adaptive triangular mesh of ∼ 800

nodes.

a b 

Figure S3. (a) The Syy stress component surrounding a crack in an Arruda-Boyce material. Only half of the sample is shown. (b)

CTOD profiles for Neo-Hookean and Arruda-Boyce materials.

Fig. S3 shows an example of a solution and the CTOD profiles extracted from solutions obtained using three

different materials. The Neo-Hookean model results in a parabolic CTOD, as predicted by the scaling argument. An

Arruda-Boyce model with λm = 8 shows a very small deviation from a parabola. Decreasing λm to 3 results in a

decrease of the CTOD power-law exponent to ∼ 1.5.

In all of the models considered here, the exponent b depends directly on the steepness of the stress-strain curve (n

in the power-law and Generalized Neo-Hookean models and 1/λm in the Arruda-Boyce model). We anticipate that a
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future model that takes into account the anisotropy of our gels as well as nonlinear elasticity will be able to explain

our observations.
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