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REGARDING THE DERIVATION OF EQS. (1) AND (2)

Our derivation follows closely [1]. Our starting point is the wave equation for φ,

φxx + φyy + φzz − c−2φtt = 0 , (S1)

which is complemented by the dynamic boundary condition,

µ∂yφ(x, 0±, z; t) = p(x− vt); x < vt+ f(z, t) , (S2)

where µ is the elastic modulus and c ∝ √µ. We rescale φ and the coordinates, and write the wave equation in a frame
of reference moving at velocity v. x → (x − vt)/l, y → y/l, z → z/l, ct/l → t, v → v/c, p → p/µ Eq. (??) and (S2)
become

α2φxx + φyy + φzz − φtt + 2vφxt = 0 , (S3)

∂yφ = p(x)x < f(z, t) . (S4)

We define ε = maxz,t|f(z, t)|/l and the “inner” variables X = εx, Y = εy. Writing Φ(X,Y, z; t) = φ(x, y, z; t), the
eqution for the “inner” problem is

α2ΦXX + ΦY Y + 2εvΦXt + ε2(Φzz − Φtt) = 0 . (S5)

This equation may be solved order-by-order in the small parameter ε by subtituting the expansion Φ = ε1/2Φ(1/2) +
ε3/2Φ(3/2) + ε5/2Φ(5/2) +O

(
ε7/2

)
. Its integration yields a number of constants that are to be determined by matching

to the outer problem.

To solve the outer problem, we recover the original coordinates and solve the wave equation for the unperturbed
problem,

α2φxx + φyy + φzz − φtt + 2vφxt = 0 , (S6)

∂yφ = p(x) x < 0 . (S7)

The solution proceeds by developing φ in powers of ε and assuming a harmonic variation in z and t, namely, φ =
φ(0) + εφ(1) + ε2φ(2) + ... = φ(0) + P0 Im{(εq(1)(x, y) + ε2q(2)(x, y))ei(kz−ωt)}.

The functions qi(x, y) satisfy the equation

α2qxx + qyy + (ω2 − k2)q − 2ivωqx = 0 (S8)

and the boundary conditions

q(x, 0) = 0; x > 0

qy(x, 0) = 0; x < 0 .
(S9)

This problem may be solved by applying a Fourier transform along the x coordinate, and using a Wiener-Hopf
decomposition to resolve the mixed boundary conditions on the fracture plane.
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EXPLICIT 2ND ORDER EQUATION OF MOTION FOR SCALAR CRACK FRONTS

Here we derive the explicit equation of motion used to propagate the crack front in our simulations. In the following,
we define the scalar wave speed c = 1 and α =

√
1− v2. Combining Eq. (1) and (3) of the main text, local energy

balance reads

G0g(v⊥)(1 +H[f ]) = Γ̃0(1 + av⊥)(1 + δA) , (S10)

where the instantaneous position of the crack front is given by x = vt + f(z, t). Approximating v⊥ ' v + ft − v
2f

2
z ,

where subscripts denote derivatives, and keeping only terms up to the 2nd order in f and δA, Eq. (S10) becomes(
1− 1

α2

(
ft −

v

2
f2z

)
+

1− 2v

2α4
f2t

)
(1 +H[f ]) =

(
1 +

a

1 + av

(
ft −

v

2
f2z

))
(1 + δA) , (S11)

where we assumed that for the unperturbed crack, G0g(v) = Γ̃0(1 + av). To obtain an explicit expression for ft, we
substitute H[f ] with the right-hand-side of Eq. (2) and expand the parentheses in (S11). The resulting equation is
quadratic in ft, which we solve, retaining only terms that are up to 2nd order in f . The result is an explicit equation
of motion for f :

ft =
v

2
f2z +

1

1 + χ

(
−Ψ[f ]− 1 + 2χ− χ2 + 4v

4α2(1 + χ)2
Ψ[f ]2 +

1

2α2
Ψ[fΨ[f ]]− 1− 2v

4α2
Ψ2[f2]− 1 + 2v

2α2
fΨ2[f ]

)
+

1

1 + χ

(
−α2δA+

χ2 − 2v

(1 + χ)2
Ψ[f ]δA+

2χ(1− χ) + 1− 2v

2(1 + χ)2
α2δA2

)
.

(S12)

Ψ2[f ] is defined before Eq. (2) in the main text.

DETAILS OF THE NUMERICAL SOLUTION

We discretize Eq. (S12) in both z and t, assuming periodic boundary conditions. Since the problem does not contain
an intrinsic length-scale we conveniently set the periodic z interval length to Z = 2π. The crack front is propagated
in a straightforward Euler scheme. For a z-mesh of N points, the time step is defined as ∆ = 0.2

Nα . This time step
is sufficiently small to finely sample the oscillations of the Bessel functions appearing in the history functionals Ψ
and Ψ2 for the highest wavenumber kmax = N/2. The history functionals are evaluated in k-space by trapezoidal
integration with the same time step ∆ used to propagate the crack front, and then transformed back to z-space with
a Fast Fourier Transform. This integration scheme results in an error of ∼ 0.1%. To prevent negative crack front
velocities, we equated ft = −v locally when Eq. (S12) gives v + ft < 0.

Disk-shaped obstacle — Fig. 1(d) and Fig. 2. For the crack front interaction with an obstacle, we assume that
the front is straight and initially positioned at x = 0. The z interval is discretized over N = 512 mesh points. We
insert an disk-shaped obstacle of diameter d = 0.05π centered at x = d/2 + 2ε where ε = 20π/N . Inside the obstacle
diameter δA = D = const. and outside δA = D exp

(
−2(r − d/2)2/ε2

)
, where r is the radial distance from the center

of the obstacle.
Step-lines — Fig. 4. To speed up simulations while maintaining numerical accuracy, the crack front was discretized

on a N = 4096 mesh which was made coarser at predetermined times as δA grew wider; we doubled the mesh size at
tN = (10π/2N )2/ξv− ξ/v which roughly corresponds to the times when w increased past 5 times the mesh size. Both
crack front velocity and curvature evolved smoothly during the simulation, ensuring that re-meshing did not affect
the overall dynamics.

FOCUSING FOR δA = D cos(z) AND FOR THE DISK OBSTACLE

Eq. (S12) may be solved analytically for the time-independent δA = D cos(z). Assuming that the spatial variation
of the crack front is also time-independent, Ψ[f ] → αH[fz], Ψ2[f ] → −α2fzz/2, defining the Hilbert transform

H[g] = π−1
∫

dz′

z−z′ g(z′). Then, Eq. (S12) reduces to

(1 + χ)ft + αH[fz] + α2δA =− 1 + 2χ− χ2 + 4v

4(1 + χ)2
H[fz]

2 +
1

2
H[∂z(fH[fz])] +

1 + 2χv

4
f2z +

1

4
ffzz

+
χ2 − 2v

(1 + χ)2
αH[fz]δA+

2χ(1− χ) + 1− 2v

2(1 + χ)2
α2δA2 .

(S13)
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Substituting f = Df1 cos(z) + D2v2t + D2f2 cos(2z) in Eq. (S13) and solving for order-by-order we obtain the
coefficients

f1 = −α; v2 = α2χ
(
−4χ+ v(1 + χ)2

)
4(1 + χ)3

; f2 = α
1 + (2− v)χ− (3 + 2v)χ2 − vχ3

8(1 + χ)2
. (S14)

In Fig. S1 we compare the maximum curvature obtained by this solution with that observed during the dynamic
interaction with the disk obstacle. The curvatures in the two cases show similar dependencies on a and v, as well as
a transition from nonlinear defocusing to focusing when

√
1− v2a/(1 + av) ∼ 1.
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FIG. S1. Comparison of maximum curvatures in (a) interaction of a crack front with the disk obstacle and (b) the time
independent δA = D cos(z). In both cases D = 1. The disk curvature is κdisk = 2/(0.05π). The red dashed line corresponds
to
√
1− v2a/(1 + av) = 1 and indicates the transition from defocusing to focusing.

SUPPLEMENTAL MOVIE FILES

fig1b movie.avi — The movie shows the propagation of crack fronts depicted in Fig. 1(b) and contains 190 frames
originally taken at 15000 fps (total duration: 12.7ms), displayed here at 20fps.

fig4left movie.avi, fig4right movie.avi — The two movie files show the crack front dynamics depicted in Fig. 4 of
the main text. The duration of the first movie is T = 14.09 and the duration of the second movie is T = 14.82, where
we take Z = 2π and c = 1.
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