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Topological defects govern crack front motion and
facet formation on broken surfaces
Itamar Kolvin, Gil Cohen and Jay Fineberg*
Cracks develop intricate patterns on the surfaces that they
create. As faceted1,2 fracture surfaces are commonly formed
by slow tensile cracks in both crystalline and amorphous
materials3–5, facet formation and structure cannot reflect
microscopic order. Although fracture mechanics predict that
slow crack fronts should be straight and form mirror-like
surfaces6–9, facet-forming fronts propagate simultaneously
within di�erent planes separated by steps. Here we show
that these steps are topological defects of crack fronts and
that crack front separation into disconnected overlapping
segments provides the condition for step stability. Real-time
imaging of propagating crack fronts combined with surface
measurements shows that crack dynamics are governed by
localized steps that drift at a constant angle to the local front
propagation directionwhile their increased dissipation couples
to long-ranged elasticity to determine front shapes. We study
how three-dimensional topology couples to two-dimensional
fracture dynamics to provide a fundamental picture of how
patterned surfaces are generated.

The surface patterns created by cracks are objects of fascination
as well as practical utility1, but the fundamental laws that govern
their formation remain obscure. Classically, cracks are treated as
two-dimensional (2D); fracture surfaces are reduced to a line end-
ing at a singular point—the crack tip—where the two surfaces are
created. Cracks will propagate when the energetic cost of breaking
a unit surface area, the fracture energy Γ , is balanced by the energy
flow to the singular crack tip,G; namely,G=Γ . Crack velocities are
bounded by the Rayleigh surface wave speed, cR. This framework10
is very successful in predicting the dynamics of simple tensile cracks
that produce structureless ‘mirror’ surfaces11. In three dimensions,
the crack tip becomes a singular line, the crack front. The appear-
ance of structure1 and roughness12 within fracture surfaces demon-
strates the need for a 3D picture. Theory has, however, shown6–9

that slow (�cR) tensile (Mode I) crack fronts are stable to perturba-
tions, although the addition of twist (Mode III) can destabilize crack
fronts13–17. Surprisingly, experiments have shown that purely tensile
cracks can spontaneously form structure. Faceted fracture surfaces
appear in brittle materials ranging from crystalline silicon to amor-
phous polymers1–5. Herewe examine how these non-trivial facets are
created and how they couple to crack front dynamics.

Our experiments are performed in brittle polyacrylamide gels
of dimensions (x , y , z) = (54, 56, 4.6)mm under uniform tensile
loading (Methods). In gels, crack speeds are reduced by two
to three orders of magnitude18 (cR ∼ 5 ms−1) compared with
hard brittle materials, enabling crack dynamics to be captured at
unprecedented spatial and temporal resolution. We visualize crack
fronts propagating along the x axis in real time by shining light
through the transparent sample along the tensile y axis (Fig. 1a).
The high curvature at the crack front deflects the light and forms a
shadow image that is captured by a high-speed camera.We correlate

crack front dynamics with the surface structure they generate via
optical profilometer (Fig. 1b) measurements.

In Fig. 1c we present typical structures formed on fracture
surfaces. These are highly sensitive to mean front velocities, v.
At v < 0.01cR, surfaces are either mirror-like or consist of two
facets separated by a step-line. Once nucleated, step heights grow
and stabilize at 40 ± 10 µm. Steps then drift at an angle to the
crack front. Nucleation is strongly facilitated near existing steps
and sample boundaries. As crack velocities increase, step nucleation
becomes increasingly frequent, leading to intersections andmergers
of step-lines and increased velocity fluctuations. When v∼ 0.05cR,
microbranches, localized 10–100 µmcracks that branch off themain
front19, begin to appear and coexist with steps. For v>0.1cR, facets
disappear altogether and successions of microbranches, or branch-
lines, dominate the surface.

During the formation of facets, the in-plane (xz) profile of the
crack front is curved. We observe ∼50 µm-wide strongly curved,
‘cusp-like’, regions at step locations from which long-range convex
tails emanate, as shown in Fig. 2, where sequences of propagating
fronts are superimposed on the fracture surface they created (see
Supplementary Movies).

What determines step paths? Fracture surfaces yield a wide
distribution of angles that step-lines form with the x axis. When
step-lines exist simultaneously, their orientations can change during
propagation (Fig. 3a). We define the step-line orientation as the
angle θ relative to the local front normal, defined by the angle β
relative to x . Whereas β varies between−40◦ to+40◦ due to both
long-range curvature, induced by coexisting step-lines, and global
front tilts, θ is narrowly distributed; θ = 43◦ ± 5◦ (Fig. 3b). In
addition, we find that local crack velocities along the front vary in
proportion to the local front slope, ∂x/∂z (Fig. 3c).

What determines front shapes? When a crack is confined to a
plane, fracture mechanics20 tells us that at every point z along the
crack front the local energy flux is equal to the local dissipation;
G(z)=Γ (z). Fracture mechanics also shows us how G(z) is related
to the crack front shape21 (see Methods). On the other hand,
steps increase fracture surface area, and hence locally increase
Γ (z). While steps are an inherently 3D entity, we will assume
that the sole impact of steps on in-plane crack front dynamics
and geometry is as a localized (since step widths are <100 µm)
in-plane perturbation to Γ . To capture both the localized and
asymmetric character of the steps, we model the fracture energy
as Γ = Γ0(1+ δA(z)), where Γ0 is the bare fracture energy11,22
and Γ0δA is the contribution due to a step. The distribution
δA(z)= (2H/πW )(1±α(2z/W ))/(1+ (4z2/W 2)) models the
relative increase in surface area due to a step located at z=0;W is
its width, and the distribution is normalized so thatH=

∫
δA(z)dz

is the total surface area increase per unit crack length. Step
asymmetry is quantified by ±α. Asymmetry is apparent in both
the step out-of-plane profile, shown in Fig. 4a, and the in-plane
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Figure 1 | Fracture surface patterns in brittle polyacrylamide gels. a, The experimental set-up. A rectangular gel slab is held in imposed tension along the
y axis. The sample is illuminated by a collimated LED beam in the y direction. The light is deflected by the crack tip, producing shadow images of the
propagating front that are captured by a fast camera. b, A profilometric surface scan performed after the experiment reveals a typical faceted surface.
c, Images of typical fracture surfaces formed by cracks with increasing velocities. For v<0.01cR fracture surfaces are either mirror-like, or contain a single
step-line (first panel). As v is increased, step nucleation becomes more frequent (second and third panels) with step intersections forming cross-hatched
patterns that are commonly observed2–5 on fracture surfaces. At v∼0.05cR microbranches, which are localized kite-shaped structures, appear and coexist
with step-lines (fourth panel). For v&0.1cR step-lines disappear altogether and microbranches appear in chains or branch-lines aligned parallel to the local
front propagation direction (last panel). For our gels11,18 cR=5.2±0.2 m s−1.
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Figure 2 | Image sequences of facet-forming crack fronts and the resulting surface patterns. a–c, Sequences of crack fronts. a, A single step at
v=0.005cR displayed at 10 ms intervals. b, Two nucleating steps at v∼0.01cR displayed at 5 ms intervals. c, Merging step-lines at v∼0.01cR displayed at
5 ms intervals. d–f, Profilometric measurements of the fracture surfaces created by the fronts depicted in a–c, respectively. The fronts that formed them are
overlaid in black. At steps, fronts are cusp-like with long-range curved tails. Scale bars are 200 µm long. White regions in the surface scan represent steep
surface slopes.

front slopes ∂x/∂z , as presented in Fig. 3c. The asymmetry is also
apparent in profilometric measurements of step profiles (inset of
Fig. 4d). Energy balance along a step-forming front dictates (see
Methods) an in-plane profile given by9x= x0+ δx(z), where the
step is located at x=x0 and

δx(z)= cz+
H
π

[1
2
log
(
1+

4z2

W 2

)
∓α arctan

( 2z
W

)]
(1)

The solution δx(z) also contains an overall tilt c. Equation (1)
describes a locally concave profile with long-range logarithmic tails,
as seen when interfacial crack fronts encounter a tough strip23–25.
In Fig. 4b we present a typical example representative of more than
5,000 crack fronts (taken from25 isolated step-lines).W=50+10

−3 µm
and α= 0.24± 0.08 are approximately constant in our data (see
Methods, Supplementary Fig. 1).

Importantly, the asymmetry sign ±α always coincides with the
step drift direction along the z axis; +α (−α) when the step
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Figure 3 | Step-lines propagate at a constant angle to the local front normal in the crack frame. a, A sequence of crack fronts displayed at 0. 27 ms
intervals (in blue) forms a step-line. The red line denotes cusp locations within the fronts associated with the step-line. As the step drifts along the front, its
local orientation relative to the front changes, leading to step-line curvature. b, The angle−40◦<β<40◦ depicts the local front orientation (bottom
inset). The angle θ=43◦±5◦ between the step-line and the local front direction remains constant. The blue bars show the range of θ in intervals of 5◦ in
β , for more than 5,000 data points taken from 121 step-lines spanning 0.002cR<v<0.05cR. Top inset: distribution of all θ values. Red dots are θ values
corresponding to a. c, At each instant, the local velocity ∂x/∂t varies in proportion to the local slope ∂x/∂z—that is, the crack front contains a ‘travelling
wave’ component x(z, t)=az+vt+ f(z−ut), where u/v= tan (β±θ) (the sign of θ is positive (negative) for downward (upward) propagating steps).

drifts in the positive (negative) z direction. Examples are presented
in Fig. 4c.

In Fig. 4d we compare values of H to the directly measured
step heights h (Methods). As steady-state values of h are relatively
constant (h∼40µm), a wide range of hwas obtained by considering
two cases of growth after nucleation and decay following step
merging. As predicted by our model, the total surface area, as
inferred from the in-plane profile, H , and directly measured out-
of-plane step height, h, are proportional; H∼1.4h.

Why is H > h? A simple step of width w constitutes a surface
area increase per unit crack length,

√
h2+w2−w, which is always

less than h. A closer look at the step structure reveals an additional
hidden surface as noted previously4,5 and shown in Fig. 4a. The
lower part of Fig. 4a describes the front topology that produces
this configuration. A step-forming front is composed of two
disconnected simultaneously propagating branches. Their overlap
is the hidden surface. The flat branch (denoted with a blue line)
propagates slightly ahead of the curved branch (denoted in red). The
curved branch terminates abruptly at the point where it meets the
surface that was formed by the flat branch. As demonstrated in both
Fig. 4a and d, the curved branch is steep near this point and becomes
shallower as we move away from it. The total increase in step
surface area must therefore include the hidden branch, explaining
the relation H ∼ 1.4h since w∼ h, as profilometric data suggests
(see Supplementary Fig. 2).

This non-trivial topology explains why steps are stable. Step sta-
bility can be understood by considering two limiting cases. Linearly
perturbing a single continuous front both in-plane (δx) and out-of-
plane (δy) generates two decoupled stress contributions7,17,26,27. δx
induces tensile stresses that try to straighten the crack front, while
δy generates shear stresses that tend to flatten it. For two overlap-
ping fracture planes the picture changes28,29. When a crack splits
into two branches, induced shear stresses cause the two branches
to ‘repel’ each other; repulsion strength decreasing with branch
separation. The repulsion is strong for small step heights and the
two overlapping fracture surfaces are prevented from merging. On
the other hand, the two branches of the crack front always retain

coherence; macroscopically (Fig. 4b) the system behaves as a single
in-plane crack subject to restoring tensile stresses. Plausibly, steps
grow following nucleation due to branching repulsion and are later
stabilized by the long-range restoring shear stresses that act along
the front. The non-trivial topology of step-forming crack fronts,
then, prevents them from decaying to a flat state; the crack front
is composed of two disconnected entities and cannot be joined
without changing the crack topology. This is the hallmark of a
topological defect4,5.

Why do steps drift along the front? Steps break reflection
symmetry along the front (α 6= 0 and θ 6= 0). This suggests that
stresses surrounding the step are distributed asymmetrically, which
would lead to a bias in the step path. The value of θ , we believe,
cannot be determined by the planar theory. The selection of θ must
arise from the 3D configuration of the discontinuity at the step.
Revealing the nature of the step requires a more rigorous discussion
of the complex mixed-mode stresses that surround it.

Given the importance of three dimensionality to step stability,
direction and dissipation, one might wonder why the planar theory
works at all. Here, again, we draw an analogy from systems with
topological defects. In these systems small-strain elasticity breaks
down within a localized core region. In the case of an edge
dislocation this core is the size of a few atomic distances. Outside of
this region, elasticity remains valid, since strains are small. Similarly,
outside of step regions, front deformations are still very much
governed by in-plane elastic tension, although crack front branches
lie in planes separated by tens of micrometres.

To conclude, our direct observations of facet-forming fronts
enable us to quantitatively analyse otherwise hidden mechanisms.
We have shown that we can quantitatively incorporate the effects of
the complex 3D structure of a step into planar fracturemechanics by
modelling a step as a localized, asymmetric energy sink. Combining
the planar fracture mechanics description of the effects of energy
dissipation at a step with the observed sharp selection of step-
line paths explains how topological defects can govern crack front
dynamics. Under quasistatic conditions, a drifting step causes a
translation of the in-plane front profile along the z direction,
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Figure 4 | Local dissipation at a step determines the long-range shape of the front. a, The formation of a step by a disconnected crack front.
Top: a micrograph of the yz section of a typical step. The flat part of the step (blue) extends beneath the curved part (red) to form a hidden surface.
Top inset: surface scan showing the cross-section orientation. Bottom: topology of a facet-forming crack front. One branch of the front (red) curves and
connects to the flat surface that was formed by a second branch (blue). The curved branch (red) lags behind the flat branch (blue) while drifting along z
(red arrow). b, A typical front profile around a step. Measurements (blue dots) are in excellent correspondence to the functional form
δx(z)= cz+ (H/π)[1/2 log (1+ (4z2/W2))+α arctan (2z/W)] (red line) of width W=50µm and asymmetry α=0.24. (Inset) High-resolution
comparison after removing the global tilt cz. c, Local front slopes reveal distinct asymmetry. The sign of±α always dictates step-line drift directions; drifts
are positive (top) negative (bottom) for positive (negative) α. Insets: fracture surfaces formed by overlaid fronts. Colours as in main panel. d, In-plane front
amplitudes H are proportional to out-of-plane step heights h; H∼ 1.4h. Red dots depict step-line rapid growth following the double nucleation event in
Fig. 2b,e. Black dots depict step-line height decay following a merging event similar to Fig. 2c,f. Arrows depict growth (red) and decay (black). Triangles and
circles depict step-lines near steady state, representing H values averaged over step heights h in 2 µm intervals. Di�erent colours represent single
step-lines (triangles) and step-lines coexisting with other surface structures (circles). Inset: a typical step profile y(z) along a section (dotted line) normal
to the step-line presented.

enslaving the local velocities ∂x/∂t to front geometry, ∂x/∂z , as
shown in Fig. 3c.

Our results highlight a number of observations that may aid
in the development of a fundamental theory of 3D crack front
dynamics. The front asymmetry governs the sense of step drift
and may be quantitatively described by a first-principles deriva-
tion of the 3D disconnected front configuration that produces a
step. Although local front and step-line directions vary over a
wide range of orientations (between 0◦ to 90◦ in our system), they
form a sharply selected angle θ between them. θ should coincide
with the mysterious ‘magic angles’ reported to emerge from frac-
ture surface roughness5, and the selection must result from a 3D
fracture analysis where mode mixity should be relevant17,27. Step
nucleation, growth and stability are all 3D effects and could involve
nonlinear elasticity5,14,30.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Gel preparation.We prepared 14% (w/v) polyacrylamide gels crosslinked with
2.6% N ,N ’-Methylenebisacrylamide/acrylamide (Sigma-Aldrich). Bulk
polymerization was initiated with 0.1% ammonium persulfate and catalysed with
0.05% tetramethylethylenediamine (TEMED). The solution was then poured into a
home-made mould. The mould was constructed of two optically flat glass bars that
are placed parallel to each other on a glass base plate. The faces of the resulting gel,
which inherit the flatness and parallelity of these bars, enabled undistorted optical
access through the two xz faces of the sample. A thin acrylic plate is fitted between
the bars to act as a cover, and two machined acrylic spacers supported the cover
above the base plate. During polymerization, the mould was surrounded by a ‘bath’
of the polymer solution. Prior to polymerization, the mould parts and bath were
rinsed with soap, dried and then cleansed with ethanol. After assembling the
mould, the solution was poured so as to fill the bath and submerge the mould. This
technique prevents the sample from having free surfaces that can create anisotropic
stresses during polymerization and destroy the optical uniformity of the gel. To
prevent polymerization inhibition by atmospheric oxygen, the bath together with
mould and solution were placed in a sealed container filled with argon gas.
Polymerization was completed within 90min, after which the gel sample was
carefully extracted from the mould and cut to a rectangular shape of dimensions
54×94×4.6mm3 (x×y× z).

Fracture experiments. The sample was loaded within two grips positioned at the
ends of the sample’s y dimension leaving 56mm of free material. Fractures were
initiated by two different methods. When very slow fracture was required, a small
notch was imposed at the sample’s edge at its mid-plane and an initial seed crack
was made, using a scalpel at the notch’s centre. This crack then propagated into the
sample by applying opposing point loads to the notch faces until a sharp seed crack
of desired length was obtained. Only then was tension applied to the sample (by
displacing the grips at a rate of 50 µms−1) until slow (for example, v=0.005cR)
crack propagation initiated. A second method was used to obtain more rapid
fracture. In this method, prior to fracture, we first applied a constant displacement
to the sample by translating both grips anti-symmetrically so that the centre xz
plane was stationary. A seed crack was then introduced by pushing a glass fibre of
diameter 100 µm via a translation stage through the edge of the sample at its
mid-plane (in y) until propagation initiated. Using this method, the sample was
slightly overstressed prior to initiation of propagation and the more rapid velocities
were obtained. In both methods, these careful crack initiation procedures were
necessary to ensure that no initial surface structure was induced prior to fracture
initiation. Images of the moving front were obtained by shining a beam of
collimated (light-emitting diode) light through the bulk of the gel in the y
direction. The grips had built-in optical windows that enabled collimated
illumination and imaging of the fracture plane. A 270mm lens collected the
outgoing light and projected the image of the xz mid-plane of the sample onto the
sensor of a high-speed camera (Y4-S2, IDT). We recorded images at a spatial
resolution of 10 µm per pixel and at rates of 10,000–15,000 frames per second. Due
to boundary effects, we had a clear view of only the centre 2mm of the total 4.6mm
sample thickness. During crack propagation through the gel, the high curvature at
the crack front deflected the incoming light. As a result crack fronts appeared
as a sharply defined shadow that progressed into an otherwise uniformly
illuminated frame.

Surface profilometry. Immediately following each experiment, we made a cast of
the fracture surface using polyvinyl siloxane (Elite HD+, Super Light Body,
Zhermack). The cast captures surface patterns in microscopic detail. This was
verified by comparing height measurements of a 120 µm grid lithography etched on
glass with a cast of the same grid. The surface casts were measured with an optical
profilometer (Contour GT-I, Bruker) to produce 3D height maps with a lateral
resolution of 2 µm and a vertical resolution of 1 µm.

Image processing. Crack fronts were extracted from shadow images at sub-pixel
(∼3 µm) resolution. Shadow images were divided by a background image and the
front position was defined using a threshold of 0.5. To find the point where relative
image intensity passed the threshold we cubically interpolated image intensity
along the x axis, enabling our sub-pixel resolution.

Matching crack fronts and fracture surface patterns. Fracture steps produced a
cusp-like deformation in the crack front. We first detected the cusp locations at
each front and obtained the step-line pattern in the crack frame, which was
elastically deformed relative to the material rest frame. We then extracted the
contours of the step-lines in the material rest frame from the profilometric
measurement. The two patterns were then superposed by imposing both a global
translation and homogeneous deformation.

Measurement of the angles θ and β in Fig. 3b. Given a series of crack fronts along
a step-line, we computed the local curvature by numerical differentiation (using a
second-order Savitzky–Golay filter and with a window size of 5 pixels). We then

detected the point of maximum curvature (which we identified as the local
position of the step) and estimated the local front slope at this point. The angle β
is defined as the angle between the normal to this local tangent to the front and
the x axis.

We define a step-line as the curve traced by these positions as the crack front
propagated in time. The local slope of the step-line at each point where β was
determined (again using a Savitzky–Golay filter with a window size of 5 pixels)
yielded the angle θ ; defined as the difference between β and the angle defined by
the step-line and the x axis. Using this procedure, we were able to determine β to
an accuracy of 4◦, which corresponds to the r.m.s. variation of the angle θ in
Fig. 3b. The selection of θ is therefore extremely sharp; the variance in the
measured values of θ essentially reflects experimental accuracy, and not systematic
variations. The number of data points used to determine the range of θ for a given
β was at least 10, and exceeded 50 for−35<β<25.

Derivation of the front shape δx(z) from δA(z). Consider a quasistatic straight
crack front x(z)=x0 which is parallel to the z axis and constitutes the edge of a
semi-infinite tensile (Mode I) crack lying in the plane y=0. As derived first by
Rice21 any small (that is, first order) in-plane perturbation to the front profile
x=x0+δx(z) produces a z-dependent stress field around the crack front
σ∼K (z)/

√
r . Here r is understood to be the distance from a point on the front

p= (x(z), 0, z) to a point in the xy plane that intersects the front at p. The stress
intensity factor (SIF) K (z)=K0+δK (z) is composed of the unperturbed SIF K0

and the perturbation

δK
K0
=−

1
2
H

[
∂δx
∂z

]
(2)

whereH[f ]=π−1
∫
(dz ′)/(z− z ′)f (z ′) is the Hilbert transform. Following

Freund10 the energy release rate at p is proportional to the SIF squared:
G∼K 2

∼K 2
0 +2K0δK . On the other hand, the fracture energy is assumed to take

the form Γ =Γ0(v)(1+δA(z)), where v is the local crack velocity. For the small
values of v observed in our experiments, however, Γ0 is practically constant. Energy
balance G=Γ therefore dictates that to the zeroth order Γ0=G0∼K 2

0 and that to
the first order in δx

−H

[
∂δx
∂z

]
=δA(z) (3)

To solve for the front shape, the Hilbert transform can be inverted using the
identityH2

=−1 to obtain δx(z)=
∫
dz ′H [δA]. Assuming that

δA(z)= (2H/πW )(1±α(2z/W ))/(1+ (4z2/W 2)) we find that
H[δA](z)= (2H/πW )((2z/W )∓α)/(1+ (4z2/W 2)). Straightforward
integration then yields equation (1).

It is interesting to note that when second-order corrections to G due to large
front perturbations25 are taken into account, the value of H=

∫
dz δA does

not change.

Estimation ofW and α for isolated step-lines.We estimatedW by numerically
differentiating the crack front (using a second-order Savitzky–Golay and with a
window size of 5 pixels), and measuring the distance between the two extrema that
appear at the step location. For the data in Fig. 4bW=50+10

−3 µm is constant
regardless of the variation of H (see Supplementary Fig. 1). We therefore fixed
W=50µm and initially performed fits over all our data with H and α as free
parameters. We found that the value of α=0.24±0.08 was uncorrelated with H .
The value of α justifies our estimation ofW ; the analytical derivative of the
functional form δx(z)= cz+ (H/π)[1/2 log(1+ (4z2/W 2))±α arctan(2z/W )],
that is, (∂x(z)/∂z)= c+ (2H/πW )((2z/W )±α)(1+ (4z2/W 2)), has extrema
that are separated approximately byW with an error term O(α2). Since α2

�1 the
numerical estimation ofW is correct. The values of H in Fig. 4b were in the end
obtained by fixing both α andW and fitting to δx(z) with H as the sole free
parameter. In cases where more than one step existed along the front at a given
time, it was necessary to add a global quadratic term to δx(z) to account for the
long-range curvature induced by neighbouring steps.

Fits to double nucleation (for example, Fig. 2b,e). To extract the amplitude H in
double nucleation cases, we used a superposition δx(z− z1)+δx(z− z2), where
z= z1,2 are the locations of the two steps. As we observe that both steps grow in
exactly the same way, we used the same amplitude H for both δx(z− z1)
and δx(z− z2).

Code availability. Custom computer codes used in this work are available from the
corresponding author upon request.

Data availability. The data supporting the findings of this study are available
within the paper and its supplementary information files and available from the
corresponding author upon reasonable request.
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