Scalable Sparse PCA: A Tractable MIP under Statistical Assumptions

Problem Definition and Motivation

e In Sparse PCA (SPCA), we are given n independent samples
from a mean zero p-dimensional Gaussian distribution with a
spiked covariance model, i.e..

Xi,..., X, iri\(]l/\/'((),C?k) and G*=1I,+60u v (1)
where ©u* € R? is a sparse vector with s-nonzeros and 6 is the

SNR. The goal is to estimate u* from the data.

The natural SPCA problem is given by:

max ! X' Xu st |ulls < 1;|lullo < s. (2)
ucRP

A solution @ to problem (2) is known to enjoy optimal
statistical properties under model (1).

Current MIP formulations of SPCA [1, 2, 3] provide
small /moderate optimality gap ~ 20% when p ~ 2000.
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Optimization Algorithm

o We show problems (3) and (4) can be reformulated as

P
nin F(z) st. z€{0,1}7; ) 2z <s, (5)

where F': 0,1/ — R is a convex subdifferentiable function.

At each iteration, we minimize a piecewise linear lower bound
of F' under the constraints of problem (5):

bsit. Zzzgs (6)

where g, is a subgradient of I at z and 2z is the minimizer
of (6) at iteration ¢. Note that problem (6) is an MILP.

F —|_ 1 —
in - pnax {F(2') + g2(z = 2')

A subgradient of F'(z) can be efficiently computed by solving
s QPs/SOCPs in parallel, each with s variables. For e.g.,
for (3) we need to solve (7) for all 5 such that z; = 1:

1 .
Z@;%H% s.t. \5@,3" < 2,1 € [p] (7)

min —||lx; —
177

B)
We use first-order methods to solve problem (7). As s is

Numerical Experiments

e [ixperiments are done on a personal desktop with runtime
limited to 20 minutes.

e Problem (4) (perspective formulation) leads to smaller
MIP-gaps compared to (3).
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Estimation Error (s = 10)
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Estimation Error (s = 5)

Proposed vs polynomial-time and heuristic methods. (p = 10%)

e Both our formulations provide optimality gap smaller than
10% and 20% for s = 5 and s = 10, respectively.

Conclusion

By utilizing Gaussian graphical models and properties of
model (1), we reformulate SPCA as the MIQP:

p
min D Nz = Bl (3)
A 17]
stz € 40,11 Byl < min(z;, z5), 1,7 € | ZZZ < s e Theorem 1: The optimal solution of problem (3) can be
used to estimate 4 such that with high probability,

2
|
SiHZ 4(/&7“*) < S Og<p/8>

e We present simplified MIPs under statistical assumptions to
solve SPCA problem with p ~ 10* in tens of minutes. Current
MIP algorithms for SPCA can provide moderate optimality gap
for p ~ 2000.

e Our framework enjoys statistical guarantees on par with
polynomial-time algorithms, but with significantly improved sta-
tistical performance.

e Our algorithm provides numerical performance close to heuris-

small, first-order algorithms are efficient.

Statistical Theory

where x; is the i-th column of the data matrix X & R”Xp .

e We also consider a perspective formulation of (3): ~ nb? tic algorithms which, unlike our algorithm, have limited theoret-
p e Theorem 2: Suppose for i € [p| such u} # 0, |uf| 2 \/% ical guarantees.
o DMz =D Bzl + A Y D i (4) Then, if n 2 s°log(p/s) /6%, problem (3) recovers the support References:
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of u* correctly with high probability.
st. z2€{0,1}"; ¢, > 0; lﬁm\ g min(z;, ;) 4, j € [p]

5 . Z e Polynomial-time algorithms for SPCA achieve the same rate
B < Gigz, t.J €l Dz <s.

up to logarithmic factors [4].

e The minimax optimal error rate for (2) is slog(p/s)/n6*. We

e Big-M in our formulation under statistical model (1) is 1. lose a factor s in lieu of a simpler MIP.



