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Problem Definition and Motivation

• In Sparse PCA (SPCA), we are given n independent samples
from a mean zero p-dimensional Gaussian distribution with a
spiked covariance model, i.e.,

X1, . . . , Xn
iid∼ N (0, G∗) and G∗ = Ip + θu∗u∗T (1)

where u∗ ∈ Rp is a sparse vector with s-nonzeros and θ is the
SNR. The goal is to estimate u∗ from the data.

• The natural SPCA problem is given by:
max
u∈Rp

uTXTXu s.t. ‖u‖2 ≤ 1; ‖u‖0 ≤ s. (2)

A solution û to problem (2) is known to enjoy optimal
statistical properties under model (1).

• Current MIP formulations of SPCA [1, 2, 3] provide
small/moderate optimality gap ∼ 20% when p ∼ 2000.

Problem Formulation

• By utilizing Gaussian graphical models and properties of
model (1), we reformulate SPCA as the MIQP:

min
β,z

p∑
j=1
‖xj −

∑
i 6=j

βi,jxi‖2
2 (3)

s.t. z ∈ {0, 1}p; |βi,j| ≤ min(zi, zj), i, j ∈ [p];
∑
i

zi ≤ s

where xi is the i-th column of the data matrix X ∈ Rn×p.

• We also consider a perspective formulation of (3):

min
β,z,q

p∑
j=1
‖xj −

∑
i 6=j

βi,jxi‖2
2 + λ

∑
j∈[p]

∑
i 6=j

qi,j (4)

s.t. z ∈ {0, 1}p; qi,j ≥ 0; |βi,j| ≤ min(zi, zj) i, j ∈ [p]
β2
i,j ≤ qi,jzj, i, j ∈ [p];

∑
i

zi ≤ s.

• Big-M in our formulation under statistical model (1) is 1.

Optimization Algorithm

• We show problems (3) and (4) can be reformulated as

min
z

F (z) s.t. z ∈ {0, 1}p;
p∑
i=1

zi ≤ s, (5)

where F : [0, 1]p→ R is a convex subdifferentiable function.

• At each iteration, we minimize a piecewise linear lower bound
of F under the constraints of problem (5):

min
z∈{0,1}p

max
i=0,··· ,t−1

{F (zi) + gTzi(z − zi)} s.t.
p∑
i=1

zi ≤ s, (6)

where gz is a subgradient of F at z and zi is the minimizer
of (6) at iteration i. Note that problem (6) is an MILP.

• A subgradient of F (z) can be efficiently computed by solving
s QPs/SOCPs in parallel, each with s variables. For e.g.,
for (3) we need to solve (7) for all j such that zj = 1:

min
βj

1
2
‖xj −

∑
i 6=j

βi,jxi‖2
2 s.t. |βi,j| ≤ zi, i ∈ [p]. (7)

• We use first-order methods to solve problem (7). As s is
small, first-order algorithms are efficient.

Statistical Theory

• Theorem 1: The optimal solution of problem (3) can be
used to estimate û such that with high probability,

sin2 ∠(û, u∗) . s2 log(p/s)
nθ2 .

• Theorem 2: Suppose for i ∈ [p] such u∗i 6= 0, |u∗i | & 1√
s
.

Then, if n & s2 log(p/s)/θ2, problem (3) recovers the support
of u∗ correctly with high probability.
• Polynomial-time algorithms for SPCA achieve the same rate

up to logarithmic factors [4].
• The minimax optimal error rate for (2) is s log(p/s)/nθ2. We

lose a factor s in lieu of a simpler MIP.

Numerical Experiments

• Experiments are done on a personal desktop with runtime
limited to 20 minutes.
• Problem (4) (perspective formulation) leads to smaller

MIP-gaps compared to (3).
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• Both our formulations provide optimality gap smaller than
10% and 20% for s = 5 and s = 10, respectively.

Conclusion

• We present simplified MIPs under statistical assumptions to
solve SPCA problem with p ∼ 104 in tens of minutes. Current
MIP algorithms for SPCA can provide moderate optimality gap
for p ∼ 2000.
• Our framework enjoys statistical guarantees on par with
polynomial-time algorithms, but with significantly improved sta-
tistical performance.
• Our algorithm provides numerical performance close to heuris-
tic algorithms which, unlike our algorithm, have limited theoret-
ical guarantees.
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