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Introduction
Kidney exchange programs (KEPs) are a recent innovation in organ donation.
Participants of KEPs are

• incompatible donor-recipient pairs (“pairs”)

• non-directed donors (“NDDs”), i.e. donors not associated with recipient

Idea: recipients exchange donors (creating a cycle), NDDs can start chain of
transplants

Given: a compatibility graph G = (V,A), where

• V = P ∪N : set of pairs and NDDs
• arc (i, j) ∈ A if i’s donor compatible with j ’s recipient

Find: a packing of cycles and chains of maximum total length.
Extra constraint: cycle and chain lengths bounded by K and L respectively
(CK and DL (CjK and Dj

L)): sets of cycles of length ≤ K and chains of length
≤ L (involving j)
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Figure 1: KEP with 2 NDDs and 8 pairs, with a solution for K = 3 and L = 1

Robust Kidney Exchange

Problem: donors can decide to withdraw, thus breaking cycles or chains.

Stage 1: identify a cycle / chain packing (“initial solution” x ∈ {0, 1}CK∪DL ).
Stage 2: ≤ B donors leave the KEP (“attack” u ∈ U = {χS : S ⊆ V, |S| ≤ B}).
Stage 3: reconsider packing based on u (“recourse solution” xu ∈ {0, 1}CK∪DL ).

Objective: maximize guaranteed number of pairs involved in initial and
recourse solution under worst-case attack
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Figure 2: Robust kidney exchange, with B = 2, has objective value 4.

IP formulation (cycle-chain enumeration)

Variables:
yuj ∈ {0, 1}: is j ∈ P contained in initial & best recourse solution given u ∈ U?
xc, x

u
c ∈ {0, 1}: is the cycle or chain c ∈ CK ∪ DL used both in initial & best

recourse solution given u ∈ U

zFR(U) = max Z, (1a)
s.t. Z −

∑
j∈P

yuj ≤ 0, u ∈ U (1b)

yuj −min{
∑

c∈CjK∪D
j
L

xc,
∑

c∈CjK∪D
j
L

xuc } ≤ 0, u ∈ U , j ∈ P (1c)

∑
c∈CjK∪D

j
L

xc ≤ 1, j ∈ P ∪N (1d)

∑
c∈CjK∪D

j
L

xuc ≤ 1− uj , u ∈ U , j ∈ P ∪N (1e)

Variants: position-indexed cycle edge formulation (PICEF): split up chain
variables into variables indexed by arc and its position in the chain.

Iterative approach

The number of variables and constraints is exponential. To overcome this,
consider small subset Ū ⊆ U initially and add new attacks if necessary.

R(x, u): problem of finding the best recourse solution given initial solution x
and attack u (max. overlap)

Start Solve zFR(Ū)

Solve subproblem
A(x̄) = min

u∈U
R(x̄, u)

R(x̄, ū) < zFR(Ū)? End
Ū ⊆ U

x̄
ū

yes (add ū to Ū) no

Figure 3: Framework for solving zFR(U)

Main contribution (solving A(x̄))

Reference method: branch-and-bound algorithm [1]
Drawback: can only solve instances with V ≤ 50, B ≤ 4 within one hour.
We consider a Benders-type approach instead. (FG: feasible KEP solutions)

z(FG, x̄) = min Z (2a)
s.t. Z ≥

∑
c∈S

wc(x̄)xc, ∀S ∈ FG (2b)

xc ≥
∑

v∈V (c)

(1− uv)− |V (c)|+ 1, ∀c ∈ CK ∪ DL (2c)

x ≥ 0, (2d)
u ∈ U . (2e)

Start

Solve z(F ′G) z(F ′G) ≥ zFR(Ū)? Solve R(x̄, u∗)

R(x̄, u∗) < zFR(Ū)? End

x̄, zFR(Ū)

u∗ no

yes (return none)

xu∗

yes (return u∗)no (add xu∗
to F ′G)

Figure 4: Benders-type framework for solving A(x̄)

Lifting

The recourse solution xu∗ only use cycles / chains not attacked by u∗.
Fact: we can “lift” best recourse solutions to the entire graph, while
maintaining optimality on the weight of chosen nonattacked cycles / chains
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Figure 5: Black solution can be lifted to blue solution (stronger Benders cut)

Numerical results

Software: SCIP 7.0.2 with SoPlex 5.0.2 as LP solver
90 benchmark instances [1] with |V | ∈ {20, 50, 100} (30 each), time limit 3600s

B&B CC CC+lifting PICEF PICEF+lifting

K = 3, L = 2

B #opt time #opt time #opt time #opt time #opt time

1 90 17.8 90 14.5 90 13.5 90 22.2 90 25.1
2 87 178.2 90 55.7 90 27.1 90 60.4 90 39.9
3 68 941.2 88 119.1 90 65.1 84 223.3 90 95.4
4 58 1335.4 82 285.4 90 81.0 77 599.4 89 118.3

K = 3, L = 3

1 87 242.3 87 190.9 88 185.5 90 63.0 90 39.3
2 68 929.3 81 442.0 84 358.5 87 229.2 90 85.5
3 59 1259.9 75 683.8 79 588.1 78 511.3 89 156.5
4 47 1600.9 68 908.0 76 686.2 66 909.2 88 225.1

K = 3, L = 4

1 63 1092.1 63 1119.2 63 1072.6 90 172.4 90 64.7
2 55 1328.4 62 1205.8 63 1228.1 80 540.4 90 147.5
3 47 1572.4 60 1252.3 62 1193.0 72 940.1 88 273.2
4 38 1956.3 58 1271.5 61 1221.9 61 1153.7 86 384.0
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