Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints

Problem Setting A Min-Max Formulation Comparison With Nuclear Norm
General low-rank problems with conic constraints: Rewrite as projection-only minimization problem Noiseless 100 x 100 matrix completion problem.
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Modeline Rank Nonlinearl » New penalty dominates (more purple=better).
5 y Penalty Interpretation of Relaxation

Cardinality can be modeled using binaries
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How to Model Projection Matrices Summary

Scalability of Exact Method: Matrix Completion

Formulate with QCQP Constraints in Gurobi » We model rank via projection matrices.

Multi-tree branch+cut: optimal solutions after 20 cuts in 3000s.
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is not representable in Gurobi. Figure: Vary v, dimensionality n € {10, 20}, proportion of entries observed » Further improvement: use custom solver.

p € {0.2,0.3}, fix rank r = 1, measure runtime (left), MSE (right).
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