
Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints

Problem Se�ing

General low-rank problems with conic constraints:

min
X∈Rn×m

〈C,X〉+ Ω(X) + λ · Rank(X) (1)

s.t.AX = B,Rank(X) ≤ k, X ∈ K.
I K a proper cone.
I Ω(X) a spectral function, e.g., Ω(X) = ‖X‖2F .
I Modeling power: matrix completion, ACOPF.
I Complexity: we prove ∃R complete.

Modeling Rank Nonlinearly

Cardinality can be modeled using binaries
‖x‖0 ≤ k ⇐⇒ ∃z ∈ {0, 1}n : e>z ≤ k,x = z ◦ x.

Rank can be modeled using projection matrices
Rank(X) ≤ k ⇐⇒ ∃Y ∈ Ykn : X = Y X,

where Ykn = {Y ∈ Sn : Y 2 = Y , tr(Y ) ≤ k}.
- “Right” extension of binaries which satisfy z2 = z.

How to Model Projection Matrices

Formulate with QCQP Constraints in Gurobi

Ykn = {Y ∈ Sn : U ∈ Rn×k,Y = UU>,U>U = I}.

Strengthen with SOCP approx of convex hull

Yi,iYj,j ≥ Y 2
i,j ∀i, j ∈ [n], Yi,i ≥

k∑
t=1

U2
i,t ∀i ∈ [n],

±2Yi,j + Yi,i + Yj,j ≥ ‖Ui ±Uj‖22 ∀i, j ∈ [n].

Where Conv(Ykn) = {Y ∈ Sn+ : Y � I, tr(Y ) ≤ k}
is not representable in Gurobi.

A Min-Max Formulation
Rewrite as projection-only minimization problem

min
Y ∈Yk

n

f(Y ) + λ · tr(Y ) (2)

with f(Y ) := min
X∈K:AX=B,

〈C,X〉+ Ω(X) s.t.X = Y X

f(Y ) = max
α

h(α)− Ω?(α,Y )← strong duality (3)
I Key result: Ω? is linear in Y
I Strong duality removes the non-linearityX = Y X .
I Solve exactly via outer-approximation.
I Solve approximately by relaxing, rounding Y greedily.

Penalty Interpretation of Relaxation

Ω(X) = 1
2γ‖X‖

2
F . Dual of (3) generalizes the perspective relax.

min
Y ∈Conv(Yn)

min
X,Θ
〈C,X〉+

1

2γ
tr(Θ) + λ · tr(Y ) s.t.

(
Θ
X>

X
Y

)
� 0.

Eliminate Y ,Θ for alternative to nuclear norm which generalizes
the reverse Huber penalty from sparse linear regression:

min
X
〈C,X〉+

n∑
i=1

min

(
2λ

γ
σi(X), λ+

σi(X)2

2γ

)
.

Scalability of Exact Method: Matrix Completion
Multi-tree branch+cut: optimal solutions a�er 20 cuts in 3000s.

Figure: Vary γ, dimensionality n ∈ {10, 20}, proportion of entries observed
p ∈ {0.2, 0.3}, fix rank r = 1, measure runtime (le�), MSE (right).

Comparison With Nuclear Norm

Noiseless 100× 100 matrix completion problem.
Vary proportion of entries observed (p) and rank (r)

Figure: Prob. recovery relax+round (le�), nuclear norm (right).

I New penalty dominates (more purple=be�er).

Solving the Relaxation at Scale.
I (2)’s relaxation decomposes into SDP-free

problems inX and Y ’s eigenvalues.
I Y ? =

∑n
i=1 λiuiu

>
i whereX? = UΣV > SVD.

I Relaxation amenable to alternating min.
I Solve relaxations when n = 1, 000s by

iteratively solving QPs and doing top-k SVD.

Summary
I We model rank via projection matrices.
I Mixed-Projection Optimization strictly

generalizes Mixed-Integer Optimization.
I We extend tools from MIO, including

branch-and-cut and relax-and-round, to MPO.
I Branch-and-cut finds certifiably optimal

solutions when n = 30s in hours.
I Relax-and-round finds solutions with bound

gap in hours when n = 1000s.
I Further improvement: use custom solver.
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