

Stable Set Congestion Games on Chordal Graphs

Federico D'Onofrio¹ and Carla Michini²

¹Department of Computer, Control, and Management Engineering A. Ruberti, Sapienza University of Rome ²Department of Industrial and Systems Engineering, University of Wisconsin-Madison

donofrio@diag.uniroma1.it

1 Introduction		6 Chordal graphs and tree decompositions
 Stable Set Congestion (SSC) games are games of N players, each solving a Maximum Weight Stable Set problem on a graph G = (V, E). A nonincreasing function w_v: {1,,N} → Z₊ over the number of players selecting node v ∈ V expresses the fact that a node might lose its value if many players use it. Goal: compute a Pure Nash Equilibrium (PNE) of SSC games, i.e., a strategy profile s.t. no player has an incentive to unilaterally deviate from the stable set she selected. 		Chordal graphs are perfect graphs s.t. every cycle of length greater than 3 has a chord. A tree decomposition ($\{B_i i \in I\}, T = (I, F)$) is a representation of G where T is a tree and each node i of T corresponds to a bag $B_i \subseteq V$. Assume G is chordal. There exists a tree decomposition s.t. each bag is a maximal clique (clique tree) and it can be found in polynomial time. The size of the maximum
2. SSC game example	3. Potential function	7. The dynamic programming algorithm for the aggregation problem
i = 1, 2 (3, 1) (1, 0) (3, 2) (3, 2)	$X^i \subseteq \{0,1\}^V$: incidence vectors of stable sets. $X = X^1 \times \cdots \times X^N$: strategy profiles.	Assume G is chordal with fixed treewidth k. Let $(\{B_i i \in I\}, T = (I, F))$ be the clique tree of G rooted at node r. Our new dynamic programming algorithm exploits T and finds z^* in $O(\mathbf{V} ^2 \mathbf{N}^{2k+1})$. Consider the following aggregation problem $Aaa(G)$:
(2,1) (b)	Each PNE is local maximum of the <i>potential function</i> :	$\max \phi^{N}(z) $ (2)
	$\phi(x) = \sum_{v \in V} \sum_{j=1}^{t_v(x)} w_v(j) \qquad x \in X$	$s.t. \ z \in N \cdot STAB(G) \cap \mathbb{Z}^V$ where $N \cdot STAB(G) := \{z \in [0, N]^V : \sum_{v \in K} z_v \le N \ \forall K \text{ maximal clique} \} \text{ and } \phi^N(z) := \sum_{v \in V} \sum_{j=1}^{z_v} w_v(j).$
$\begin{array}{c} d \\ (1,0) \\ (2,1) \end{array} f^1 = 8, f^2 = 6, \phi(x) = 15 \\ \end{array}$	$t_v(x) :=$ nb. of players using node v in x .	Main idea. \forall node i of T and $\forall q \in \{0, 1, \dots, N\}^{B_i}$ compute value $f^q(i)$ corresponding to a partial solution of (2). Proceed from the leaves of T to r using information on previous nodes. Once in r construct the optimal solution z^* of (2).
4. The problem	5. A two-phase approach	More precisely, for $i \in I$:
Find a PNE by solving: $ \begin{array}{c} $	 Del Pia et al. (2017) propose an algorithm to compute in polynomial time a global maximum of (1) for SSC games on bipartite graphs. A generalization by Kleer and Shafer (2020) allows us to solve SSC games if STAB(G) is box-TDI and has the Integer Decomposition Property. 	• If <i>i</i> is a leaf, $\forall q \in \{0, 1,, N\}^{B_i}$, if $\sum_{v \in B_i} q_v \leq N$: $f^q(i) = \sum_{v \in B_i} \sum_{j=1}^{q_v} w_v(j)$; else $f^q(i) = -\infty$. • If <i>i</i> has children $c_1,, c_l$, $\forall q \in \{0, 1,, N\}^{B_i}$, if $\sum_{v \in B_i} q_v \leq N$: $\frac{f^q(i)}{f^q(i)} = \sum_{v \in B_i} \sum_{j=1}^{q_v} w_v(j) + \sum_{h=1}^l \max\{\frac{f^y(c_h)}{f^y(c_h)} - \sum_{v \in B_i \cap B_{c_h}} \sum_{j=1}^{q_v} w_v(j) :$ (3) $y \in \{0, 1,, N\}^{B_{c_h}}, y_v = q_v \text{ for } v \in B_i \cap B_{c_h}\};$ else $f^q(i) = -\infty$. For each child c_h store the solution $y^q_{c_h}$ used to compute $f^q(i)$. Let G^i be the subgraph of G induced by all the nodes in the subtree of T rooted at i . We proved that $f^q(i)$ is the optimal value of $Aqq(G^i)$ where the entries of z indexed by nodes in B_i have been fixed to q .
$STAB(G) := conv \{ \chi \in \{0,1\}^V : \chi \text{ is incidence vector} of a stable set of } G \}.$ $G \text{ perfect} \Rightarrow STAB(G) =$	Phase 1 (Aggregation) Find the aggregated strategy z^* , i.e., \forall node v find the nb. of players who select it in the global maximum of (1).	
$\{x \in \mathbb{R}^V : \sum x_v \leq 1$ K maximal clique,	$\cdots + x^N \text{ s.t. } x^i \in STAB(G) \cap \{0,1\}^V, i = 1, \dots, N.$	8. Decomposition as a coloring problem
$\begin{cases} v \in K \\ x_v \ge 0 \qquad v \in V \}. \end{cases}$	Our contribution. The previous approaches can not be directly applied to chordal graphs with treewidth <i>k</i> . We extend the two-phase approach to this case.	We interpret the aggregated strategy z^* as a weight vector over V and we compute the decomposition of z^* in N stable sets by solving an exact weighted coloring problem. For chordal graph this problem can be solved in $O(V ^2)$ (Hoàng, 1993).