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1. Introduction

e Stable Set Congestion (SSC) games are games of \ p
problem on a graph G

ayers, each solving a Maximum Weight Stable Set
(V,E).

e A nonincreasing function w, : {1,..., N} — Z, over the number of players selecting node v € V
expresses the fact that a node might lose its value if many players use it.

Goal: compute a Pure Nash Equilibrium (PNE) of SSC games, i.e., a strategy profile s.t.
no player has an incentive to unilaterally deviate from the stable set she selected.
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6. Chordal graphs and tree decompositions

Chordal graphs are perfect graphs s.t. every cycle of clique minus one is called treewidth and it can be found
length greater than 3 has a chord. in linear time.

A tree decomposition ({B;li € I},T = (I, F)) is a rep-
resentation of G where T is a tree and each node i of
T corresponds to a bag B; C V.

Assume (' is chordal. There exists a tree decomposition
s.t. each bag is a maximal clique (clique tree) and it can

be found in polynomial time. The size of the maximum
\

2. SSC game example
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3. Potential function

X' € {0,1}" : incidence vectors of stable sets.
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strategy profiles.

Each PNE is local maximum of the potential function:
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t.(x) := nb. of players using node v in x.
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4. The problem

Find a PNE by solving:

"

5. A two-phase approach

e Del Pia et al. (2017) propose an algorithm to compute
in polynomial time a global maximum of (1) for SSC
games on bipartite graphs.

max o(x)
st. ' € STAB(G) n {0,1}'

e A generalization by Kleer and Shafer (2020) allows
us to solve SSC games if STAB(G) is box-TDI and has
the Integer Decomposition Property.

i =1,..,1

STAB(G) := conv{x € {0,1}" : x is incidence vector | | (Phase 1 (Aggregation)) Find the aggregated strategy
of a stable set of G'}. z*, i.e., V node v find the nb. of players who select it
in the global maximum of (1).

G perfect = STAB(G) = [Phase 2 (Decomposition)] Decompose z* as z = x' +

> N oo y ! fa® N
{zeRY: Z z, <1 K maximal clique, -4z st x' € STAB(G)N {0,1}",i=1,..., N.
veK
z,>0 ve V). Our contribution. The previous approaches can not

be directly applied to chordal graphs with treewidth k.
\We extend the two-phase approach to this case.

Assume G is chordal with fixed treewidth k. Let ({B;|i € I},T = (I, F)) be the clique tree of GG rooted at node
r. Our new dynamic programming algorithm exploits 7" and finds z* in O(|V[2N2k+1),

Consider the following aggregation problem Agg(G) :

max (;7‘\'(:) (2)
st. 2€ N-STAB(G)NZY
where N - STAB(G) := {z € [0, N]V : Z z, < N V¥ K maximal clique} and ¢V (2) := Z Z w, ().
veK veV j=1
Main idea. V node i of 7" and Vg € {0, 1...., N}5¢ compute value f9(i) corresponding to a partial solution of

(2). Proceed from the leaves of 1" to r using information on previous nodes. Once in r construct the optimal
solution z* of (2).

More precisely, for i € I:

o Ifiisa leaf, Vg € {0,1,..., N}, if Z g < N: fi(i) = Z w,()); else fi(i) = —o¢
vEB,; vEB; j=1
« If i has children ¢, ..., c1, ¥g € {0,1,.... N} if D~ g, < N:
q { vEB; q
m — Z Zuf‘(‘)+anx{f”(r,‘) - Z Z"""(“) : (3)
veB; =1 h=1 vEBiNB,, =1

y €{0,1,..,N}P, y, =g, for ve BiN B, }i
else f9(i) = —oc. For each child ¢, store the solution y¢, used to compute f9(i).

Let G* be the subgraph of GG induced by all the nodes in the subtree of T" rooted at i. We proved that f%(i) is
the optimal value of Agg(G") where the entries of = indexed by nodes in I; have been fixed to ¢.

8. Decomposition as a coloring problem

We interpret the aggregated strategy z* as a weight vector over V' and we compute the decomposition of z* in
N stable sets by solving an exact weighted coloring problem. For chordal graph this problem can be solved in
O(|V|?) (Hoang, 1993).




