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Introduction

In stochastic optimization, it is common to minimize the expected cost, but the probability
distribution is often unknown in many applications, leading to techniques where the ex-
pected cost is approximated. One such method is the Sample Average Approximation
(SAA), where the expected cost is approximated by a set of observed samples. We are
motivated by applications where historical data is scarce, in which case SAA can be too
optimistic and lead to poor out-of-sample performance. More specifically, we are inter-
ested in problems arising in natural disaster management, where demand and cost data
are limited, making SAA ill-suited. We focus on hurricane disasters in this work.

We turn to a two-stage distributionally robust optimization (TSDRO) model using a
Wasserstein ambiguity set. The presence of binary variables in both stages of our model
breaks convexity, and methods developed for the convex case with continuous support
can only be used as an approximation (see [1, 2, 4]). We develop a column and constraint
generation algorithm where we leverage the structure of the second stage value function
and support set to efficiently solve the TSDRO.

Preliminaries

We are given a set of facilities I with capacities C;, a set of demand nodes .J, and a finite
set of demand scenarios = = {d!, d?, ..., d"}.

First stage notation:
- x;. 1 if facility ¢ is built at a cost of O;

- §;- amount of resources to allocate to facility : at a cost of ¢

Second stage notation:
- y;;» 1ifarc (i, 7) is used for a fixed-charge cost f;;

- t;;: amount transported from ¢ to j at cost v;;

- u;: unsatisfied demand at node j penalized by U

Two-Stage Model

The two-stage stochastic program can be written as
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This model can be modified as necessary, such as adding a budget on the first stage costs
or on the number of facilities that can be built.

Our support set is defined in a hierarchical fashion using four components:
1. & € L: coordinates of the disaster’s landfall
2. £, € (' radius of affected nodes
3. {, € P: path of the disaster

4. £ € I'": fraction of the population affected at the landfall node, determining the
intensity of the disaster.

A scenario £ = (&7, €., &, ) determines the demands d of each node j € J.

Assumptions:
(A1) There can only be one landfall.

(A2) Given ¢y, the intensities (i.e. the fractions of the population affected) at the remaining
affected nodes within radius &,. are deterministic, decreasing the further they are from
the landfall.

Distributionally Robust Optimization

In DRO, we seek to minimize the worst case expected cost with respect to probability
distributions belonging to the Wasserstein ambiguity set.

Ep [Q(S7 €T>] = max [p [Q(SE, f)]

]P)EBw(IP)N,@)

where By (Py,0) = {P : dyw(P,Py) < 0} is the Wasserstein ball of radius ¢ centered
at the empirical distribution Py constructed from N samples. DRO can be seen as a
generalization of SAA and robust optimization (RO).

AA > R
S 0 7 — RO

The Wasserstein distance dy (-, -) between two probability measures is the optimal
transport of weights between scenarios such that the two measures "match", at a cost
of the distance between the scenarios. In Figure 1, the colors represent the optimal
transport from distribution p to g, and the only cost incurred is moving a weight of
0.1 from &, to &, at a cost of d (&7, &2), where d( -, -) is any valid metric.
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Fig. 1: Wasserstein Distance Example

Column & Constraint Generation Algorithm

We consolidate all first and second stage decisions into x and y. Given scenario &"
and first stage decision z, let Y (z, £") be the feasible region of the second stage fixed-
charge transportation problem. Given a set of NV samples {él, L ,éN}, an extensive
reformulation of our TSDRO model is
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s.t. anquyT—Ad(gr,én), r=1,...R, n=1,...N, (1a)
y eY(x, &), r=1,...,R, (1b)
re X

- Number of scenarios R? is very large, and solving (1) is infeasible. We instead solve (1)
with a small subset of scenarios ik C R.

- Given optimal solutions to the restricted master = and )\, we add a new scenario r €
R\ R as follows:
(i) Solve Q(z,&"). Let y* be the optimal solution.
(i) fay, < q'y*— A d(&”, é") for any sample n, add new set of constraints (1a) and (1b)
associated with » and n, and new variables y".

- We leverage the structure of Q(x, &) and our support set =, identifying dominated sce-
narios which need not be considered, and enumerating scenarios more efficiently.

Value Function Structure

Distance Metric d( -, - ):

- Can be the Euclidean distance between demand vectors, for example. Two demand
vectors can, however, be close to each other, but result from very different hurri-
canes in different locations in the network.

- Instead, we define d(-,-) as the Euclidean distance between vectors
(&ey &cy &py &7), i.€. the random vectors which define our support set.

This permits us to better capture the distance between two disaster scenarios and leads
to the following two results.

Theorem 1 (Dominated Scenarios). For each sample 5” only considering scenarios & €
=, C =, where
=, ={( €2 > &), VE where &, < &,
& > €, VE where £; < €7},

leads to an equivalent problem.

(A3) Facilities can only serve a limited number k; of demand nodes, and are not limited
by an amount pre-allocated in the first stage.

Theorem 2 (Concavity of Value Function). Assuming (A3) and given x, the value function
Q(z, ) is piece-wise concave with respect to the intensity of the disaster £;. Moreover,
Q(z,&) — Ad(&, &) is concave with respect to &; for any sample " and fixed \.

- Goal is to maximize g(§) = Q(z,§) — XHE — §”|| with respect to ¢ for each sample
given (z, \).

- Instead of enumerating O(|L| X |C| X |P| X |F'|) scenarios, we can perform a
Fibonacci search on F' for each landfall, radius and possible path, enumerating
O(|L| x |C| x |P| x log |F|) instead.
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Fig. 2: Pricing objective ¢(¢) as a function of {;

Without (A3), Theorem 2 does not hold in general, but we observe concavity in most
cases in our experiments, and using Fibonacci search still leads to speedups.

Fibonacci Search Example Let f(&f) = g(-, -, -,&). In Figure 3, we perform one step
of Fibonacci search, and maintain upper and lower bounds UB and LB. In our example,
f(&y) > f(&s,), and we update 4, €4, and UB accordingly.

Note: indices of LB, {;,, {;, and UB are always Fibonacci numbers.
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Fig. 3: One Step of Fibonacci Search

We present preliminary computational results. In Figure 4, we compare the runtimes of
three different enumeration techniques:

1. enumerate all scenarios and add the scenario which violates (1a) the most
2. enumerate and stop at the first scenario which violates (1a)
3. enumerate landfalls, radii, and paths, and perform Fibonacci search on F’

In Figure 5, we plot the opened facilities resulting from SAA and DRO using a case study
on hurricane threats in the Gulf of Mexico states, using data from [3].
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Fig. 4: Runtime comparison of different enumeration techniques
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Fig. 5: Open facilities resulting from SAA and DRO: a case study on the Gulf of Mexico states
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