

Copositive Duality for Discrete Markets and Games

CHENG GUO
CGUO@MIE.UTORONTO.CA

MERVE BODUR
BODUR@MIE.UTORONTO.CA

JOSH TAYLOR

JOSH.TAYLOR@UTORONTO.CA

BACKGROUND

ECONOMIC EQUILIBRIUM

Examples:

→ Market equilibrium:

supply = demand & individually rational

 \rightarrow Nash equilibrium (NE): no deviation from equilibrium

MOTIVATION

- Equilibrium for a convex economics problem is usually obtained by strong duality. E.g. shadow prices, Karush-Kuhn-Tucker (KKT) conditions for NE
- For nonconvex problems with discrete decisions, strong duality generally does not exist, which is a challenge
- ★ Our framework: mixed-binary quadratic programs (MBQPs) → reformulate to an equivalent convex (completely positive) program (Burer, 2009) → use strong duality of convex programs for discrete pricing and game problems.

COPOSITIVE PROGRAMMING

- Copositive cone: $C = \{X \in \mathcal{S} | y^{\top} X y \geq 0, \forall y \in \mathbb{R}_{+}^{n} \}$
- Completely positive cone: $C^* = \{XX^\top | X \in \mathbb{R}^{n \times r}, X \ge 0\}$
- CPP (completely positive program): optimize over $X \in \mathcal{C}^*$
- COP (copositive program): optimize over $X \in \mathcal{C}$, dual of CPP
- Often solved by semi-definite program (SDP) approximations

CONTRIBUTIONS

- A notion of duality for discrete problems
- A novel COP-based pricing scheme for nonconvex energy markets
- Theoretical results for mixed-binary quadratic games
- An exact cutting plane algorithm for mixed-integer COPs

FRAMEWORK & APPLICATIONS

OVERVIEW

PRICING IN ENERGY MARKETS

 $Unit\ commitment\ (UC)$ problem: For each hour t and generator g decide

 $\min \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^u u_{gt} \right)$

 $-p_{gt}$: production level

• Variables:

s.t. $\sum_{g \in \mathcal{G}} p_{gt} = d_t, \ \forall t \in \mathcal{T}$

 $t \in \mathcal{T}$ \rightarrow Demand constraints (λ) $-u_{gt}$: turn on decision $t = [m], g \in \mathcal{G}, t \in \mathcal{T} \rightarrow$ Operational constraints (ϕ) $-z_{gt}$: on/off status

 $\mathbf{a}_{jgt}\mathbf{x} = b_{jgt}, \ \forall j = [m], g \in \mathcal{G}, t \in \mathcal{T} \rightarrow \text{Operational constraints}(\phi)$ $z_{gt} \in \{0, 1\}, \ \forall g \in \mathcal{G}, t \in \mathcal{T}$

 $\left| -\mathbf{x}^{ op} = (\mathbf{u}^{ op}, \mathbf{z}^{ op}, \mathbf{p}^{ op}) \right|$

• Traditional pricing method: restricted pricing (RP)

- © Revenue generally does not recover operational costs
- Our pricing method: copositive dual pricing (CDP)

Reformulate UC as CPP Obtain the dual COP Solve the COP \rightarrow $(\lambda^*, \phi^*, \Lambda^*, \Phi^*)$

- -Thanks to strong duality of CPP:
- © Generators: Total revenue = total costs (revenue neutrality)
- © Individual rationality holds under certain conditions

Mixed-binary Quadratic (MBQ) Games

- \bullet *n-person* \overline{MBQ} *game*, each player solves an MBQP
- MBQ game \Rightarrow completely positive (CP) game
- NE of an MBQ game \Leftrightarrow NE of a CP game (under Slater's condition)
- © Propose existence and uniqueness conditions of NE for MBQ games
- © Obtain NE of an MBQ game via KKT conditions of the CP game
- -Special case: only binary variables & equality constraints (e.g. bimatrix games)
- \rightarrow KKT conditions can be reformulated to a single (mixed-integer) COP

| ALGORITHM & NUMERICAL RESULTS

CUTTING PLANE FOR COPS

- COPs are often solved with SDP approximations
- We propose a novel cutting plane algorithm for mixed-integer COP problems:
- Step 1: Solve a relaxed problem without the conic constraint $\Omega \in \mathcal{C}$
- Step 2: Solve a MIP (Anstreicher, 2020) to separate the optimal $\hat{\Omega}$:

max
$$w$$

s.t. $\hat{\Omega} \mathbf{z} \leq -w\mathbf{1} + M(1 - \mathbf{u})$
 $\mathbf{1}^{\top} \mathbf{u} \geq q$
 $w \geq 0, \mathbf{z} \in [0, \mathbf{u}]^{n_c}, \mathbf{u} \in \{0, 1\}^{n_c}$

- Step 3: If optimal $\bar{w} > 0$, add the cut $\bar{\mathbf{z}}^{\top} \Omega \bar{\mathbf{z}} \geq 0$

Max clique					Mose	k	Cutting p	lane
instance	$ \mathcal{N} $	$ \mathcal{E} $	ω	Obj	Gap(%)	Time(sec)	Time(sec)	#Iter
c-fat200-5	200	8473	58	60.35	3.89	606.33	12.19	2
hamming6-4	64	704	4	4	0	1.59	1.55	4
johnson16-2-4	120	5460	8	8	0	31.88	62.75	2
MANN_a9	45	918	16	17.48	8.47	0.45	547.62	2

PRICING EXPERIMENT: SCARF'S EXAMPLE

• Scarf's example: a classical nonconvex market example

- CHP (convex hull pricing, Hogan and Ring, 2003): Lagrangian dual prices

- RCDP (revenue-adequate CDP): individual revenue adequacy required in the dual COP

GAME EXPERIMENT: BIMATRIX GAMES

- Use bimatrix games for testing the KKT conditions
- Converges pretty fast (slower than state-of-the-art bimatrix game algorithm)
- -Our method is more general, can be applied to other games

Size	Time (sec)	# Iteration
3×3	1.48	
4×4	2.45	3
5×5	4.75	6