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Redistricting and Gerrymandering

Every 10 years in the United States, 428 congressional, 1938 state senate, and 4826 state house districts are
redrawn, cementing the partisan power balance for the following decade in a process known as redistricting. In
most states, politicians get to draw these lines, enabling partisans to secure a partisan advantage, suppress the vote
of minority groups, and protect incumbents from competition. Such practices, broadly known as gerrymandering,
are accomplished by “cracking” and “packing” opposition voters to strategically dilute their power. The goal of
our work is to use these mechanisms to instead generate more representative districts with a scalable algorithm.
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Political Districting Problem (PDP)

Input
1. Atomic Geographic Blocks (B) - census units or precincts
2. Adjacency Graph G = (B,E) where pi denotes the

population for each i ∈ B and dij denotes the distance of
each edge i, j ∈ E

3. Parameters - k is the number of districts in a plan and εp is
the population tolerance.

Constraints
1. Population balanced (deviation < εp).
2. Contiguous - it is possible to reach any block from any other

block without leaving the district.
3. Geographically compact - the districts form geometrically

simple shapes.
Objective
1. Compactness (e.g., moment of inertia, Roeck, Polsby

Popper, total perimeter, edge cuts).
2. Fairness (e.g., proportionality, partisan symmetry).
Output - An assignment of blocks to districts that
forms a connected k-partition.

Decoupled Formulation

Instead of optimizing a plan in one shot, we use a decoupled
formulation and first generate a large set of legal districts D
(traditional on-the-fly column generation does not work because
of the degeneracy of the master problem). These districts are
collected into a binary block-district matrix A which encodes the
assignment of blocks to districts. Assuming all districts are
contiguous and population balanced, the set of all feasible plans is

F = {x : Ax = 1, ||x||1 = k, x ∈ Zn2}
and the optimal plan x̂ ∈ F maximizes some linear objective cx.

Importantly, the complexity of solving max cx s.t. x ∈ F scales
with n, the number of districts, not |F |, the size of the feasible
set. Therefore, we want to generate a representative set of
districts, that are also efficient, meaning that |F |

n is large.
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Stochastic Hierarchical Partitioning (SHP)

We generate efficient columns by recursively
sampling region partitions and organizing these
into a sample tree. For each partition step, we
sample a split size z, sample a capacity of each
center si, sample the position of the centers ci,
and finally solve a partitioning integer program to
perform the final assignment of blocks to regions.
The partition integer program (right), is
essentially a transportation problem with a
contiguity constraint (5). The set

Sij = {k : (k, j) ∈ ER, d
R
ik < dRij}

is the set of neighbors of j that are closer to i.

minimize
∑
i∈C

∑
j∈R

(dij)αpjxij (1)

s.t.
∑
i∈C

xij = 1, ∀j ∈ R (2)∑
j∈R

pjxij ≤ p̂(si + εp) ∀i ∈ C (3)∑
j∈R

pjxij ≥ p̂(si − εp) ∀i ∈ C (4)∑
k∈Sij

xik ≥ xij, ∀i ∈ C, ∀j ∈ R (5)

xij ∈ {0, 1}, ∀i ∈ C, ∀j ∈ R (6)
This enforces that a district is a subtree of the shortest path tree rooted at block i (ensuring contiguity) [2].
Center blocks are sampled iteratively with probability proportional to the product of the distances to the already
sampled centers. We continue sampling region partitions until s = 1, which yields a legal district.

A sample tree of North Carolina with sample width w = 3 and split sizes z ∈ [2, 5].

Theorem 1 Consider a set of blocks B to be partitioned into k districts. For a sample tree with root node
(B, k) and with nodes corresponding to distinct partitions, with constant sample width w, and arbitrary split
sizes z′ ∈ [2, z], the tree admits P (B, k) total distinct partitions where

w
k−1
z−1 ≤ P (B, k) ≤ wk−1.

Master Selection Problem (MSP)

The second step is to optimize over the generated districts to
select the k districts of the optimal solution. We solve a MSP
once for every root partition because columns without shared
parents are unlikely to be compatible. This makes the whole
pipeline arbitrarily parallelizable because root partitions can be
generated and optimized independently. We can also add
arbitrary linear constraints to encode additional legal requirements
for the Voting Rights Act or state specific rules.

minimize
∣∣∣ ∑
j∈D

cjxj

∣∣∣ (1)

s.t.
∑
j∈D

aijxj = 1, ∀i ∈ B; (2)∑
j∈D

xj = k; (3)

xj ∈ {0, 1}, ∀j ∈ D. (4)

Objective Function

Using historical precinct returns for statewide elections, we can estimate the probability that an arbitrary district
will have a greater proportion of Democrats or Republicans: νi ∼ N (µi, σ2

i ), ψi ∼ B(P (νi > .5)). By linearity
of expectation, the expected difference between the statewide seat-share and statewide vote-share is the sum of
the differences between the expected district-level seat-share and statewide vote-share:
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(
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))
.

Importantly, we can also minimizeE(h(vi)−ψi), enabling arbitrary ideal mappings of seats to votes. The efficiency
gap (EG) [3], a popular fairness metric, measures the difference between wasted (surplus or losing) votes for the
two parties. Assuming uniform turnout, the efficiency gap assumes an ideal mapping h(v) = 2v − 0.5.

Results

We run our algorithm on all 43 multi-district states and compare the distribution of partisan outcomes with the
average partisan composition of the past decade and the point that would minimize the expected efficiency gap.
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Compared to the standard quantitative tool in redistricting, recombination Markov chains [1], our method gener-
ates plans with a wider partisan range while better maintaining district compactness, especially in larger states.

Our results show that with just using natural districts, those that are of a reasonable shape and neutrally
generated, we can change the partisan composition of the House of Representatives by about 20%. Furthermore,
we demonstrate the efficacy of our decoupled design and scalability of our hierarchical generation method.

References

[1] Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A family of Markov chains for redistricting. arXiv preprint arXiv:1911.05725, 2019.
[2] Anuj Mehrotra, Ellis L Johnson, and George L Nemhauser. An optimization based heuristic for political districting. Management Science, 44(8):1100–1114, 1998.
[3] Nicholas O Stephanopoulos and Eric M McGhee. Partisan gerrymandering and the efficiency gap. U. Chi. L. Rev., 82:831, 2015.

www.fairmandering.org IPCO 2021 team@fairmandering.org

https://www.fairmandering.org
mailto:team@fairmandering.org

	References

