Fairmandering: A Column Generation Heuristic for Fairness Optimized Political Redistricting

Wes Gurnee ${ }^{1,2}$ David B. Shmoys ${ }^{1}$

Redistricting and Gerrymandering

Every 10 years in the United States, 428 congressional. 1938 state senate, and 4826 state house districts are redrawn, cementing the partisan power balance for the following decade in a process known as redistricting. In most states, politicians get to draw these lines, enabling partisans to secure a partisan advantage, suppress the vote of minority groups, and protect incumbents from competition. Such practices, broadly known as gerrymandering
are accomplished by "cracking" and "packing" opposition voters to strategically dilyte their power. The goal of are accomplished by "cracking" and "packing" opposition voters to strategically dilute their power. The goal of
our work is to use these mechanisms to instead generate more representative districts with a scalable algorithm.

Political Districting Problem (PDP)

Decoupled Formulation
Instead of optimizing a plan in one shot, we use a decoupled formulation and first generate a large set of legal districts D (traditional on-the-fly column generation does not work because
of the degeneracy of the master problen) of the degeneracy of the master problem). These districts are
collected into a binary block-district matrix A which encodes the assignment of blocks to districts. Assuming all districts are contiguous and population balanced, the set of all feasible plans is $F=\left\{x: A x=1,\|x\|_{1}=k, \quad x \in \mathbb{Z}_{2}^{n}\right\}$ and the optimal plan $\hat{x} \in F$ maximizes some linear objective $c x$ Importantly, the complexity of solving max $c x$ s.t. $x \in F$ scales With n, the number of districts, not $|F|$, the size of the feasib
set. Therefore, we want to generate a representative set of districts, that are also efficient, meaning that $\frac{[F]}{n}$ is large.

Stochastic Hierarchical Partitioning (SHP)
 is the set of neighbors of j that are closer to i.
This enforces that a district is a subtree of the shortest path tree rooted at block i (ensuring $\quad x_{i j} \in\{0,1 \in R(6)$. This enforcs are sampled iteratively with probability proportional to the product of the distances to the already
Center blocks are sampled centers. We continue sampling region partitions until $s=1$, which yields a legal district.

A sample tree of North Carolina with sample width $w=3$ and split sizes $z \in[2,5]$.
Theorem 1 Consider a set of blocks B to be partitioned into k districts. For a sample tree with root node (B, k) and with nodes corresponding to distinct partitions, with constant sample width w, and arbitrary split sizes $z^{\prime} \in[2, z]$, the tree admits $P(B, k)$ total distinct partitions where
$w^{\frac{k-1}{z-1}} \leq P(B, k) \leq w^{k-1}$
Master Selection Problem (MSP)

Objective Function

 will have a greater proportion of Democrats or Republicans: $\nu_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right), \psi_{i} \sim \mathcal{B}\left(P\left(\nu_{i}>.5\right)\right.$. By linearity of expectation, the expected difference between the statewide seat--share and statewide vote-share is the sum of the differences between the expected district-level seat-share and statewide vote-share

$$
E\left[\frac{1}{k} \sum_{i=1}^{k} \hat{\nu}-\psi_{i}\right]=\frac{1}{k} \sum_{i=1}^{k} \hat{\nu}-\left(1-\Phi\left(\frac{\mu_{i}-.5}{\sigma_{i}}\right)\right)
$$

Importantly, we can also minimize $E\left(h\left(v_{i}\right)-\psi_{i}\right)$, enabling arbitrary ideal mappings of seats to votes. The efficiency gap (EG) [3] a a popular fairness metric, measures the difference between wasted (surrlus or losing) votes for the two parties. Assuming uniform turnout, the efficiency gap assumes an ideal mapping $h(v)=2 v-0.5$.

We run our algorithm on all 43 multi-district states and compare the distribution of partisan outcomes with the average partisan composition of the past decade and the point that would minimize the expected efficiency gap.

Compared to the standard quantitative tool in redistricting, recombination Markov chains [1], our method gener ates plans with a wider partisan range while better maintaining district compactness, especially in larger states.

Our results show that with just using natural districts, those that are of a reasonable shape and neutrally generated, we can change the partisan composition of the House of Representatives by about 20%. Furthermore, we demonstrate the efficacy of our decoupled design and scalability of our hierarchical generation method.

Reference

