The Price of Anarchy in Series-Parallel Network Congestion Games

Bainian Hao, Carla Michini

University of Wisconsin-Madison

Network Congestion Games

- N players
- An (s, t)-network $G=(V, E)$
- \forall player i, strategy set $X^{i}=\mathcal{P}$, the set of all $(s, t)-$ paths.
- Set of states of the game $X=X^{1} \times \cdots \times X^{N}$
$\bullet \forall e \in E$ a nondecreasing delay function $d_{e}(x)=a x+b, a, b \geq 0$.
- Each state $\left(p^{1}, \ldots, p^{N}\right) \in X$ induces an (s, t)-flow of value N in G. - The cost of a flow g is $\operatorname{cost}(g)=\sum_{e \in E} g_{e} d_{e}\left(g_{e}\right)$.
- The cost of a path p in G w.r.t. g is $\operatorname{cost}_{g}(p)=\sum_{e \in p} d_{e}\left(g_{e}\right)$.
- The augmented cost of a path p in G w.r.t. g is $\operatorname{cost}_{g}^{+}(p)=\sum_{e \in p} d_{e}\left(g_{e}+1\right)$.
- A pure Nash equilibrium (PNE) is a state $\left(p^{1}, \ldots, p^{i}, \ldots, p^{N}\right)$ inducing flow f such that, for each $i \in[N]$ we have
$\operatorname{cost}_{f}\left(p^{i}\right) \leq \operatorname{cost}_{g}\left(\tilde{p}^{i}\right) \quad \forall\left(p^{1}, \ldots, \tilde{p}^{i}, \ldots, p^{N}\right) \in X$ inducing flow g.
- A social optimum (SO) is a state inducing a flow o of minimum cost.
- The price of anarchy (PoA) is the ratio of cost of the most expensive PNE and cost of the SO.

Series Parallel Networks

An (s, t)-network is series-parallel if it consists of either a single edge (s, t) or of two series-parallel networks composed either in series or in parallel.

Given a PNE flow f and a social optimum flow o, we consider the flow $o-f$. When G is series-parallel, $o-f$ contains only internally disjoint cycles (Fotakis, 2010). The set of cycles of $o-f$ is denoted by \mathcal{C}. For each cycle $C_{i} \in \mathcal{C}$, we denote define two paths C_{i}^{-}and C_{i}^{+}, where C_{i}^{-} contains edges where $f_{e}>o_{e}$ and C_{i}^{+}contains edges where $f_{e}<o_{e}$.

Main result
Theorem 1. \quad The price of anarchy of series-parallel network con- gestion games with affine delay functions is at most 2.

- The PoA of network congestion games with affine delay functions has a tight upper bound of $5 / 2$ (Correa et al., 2019).
- On extension-parallel networks, a subclass of series-parallel networks, network congestion games with affine delay functions have a tight upper bound of $4 / 3$ (Fotakis, 2010). However, this bound cannot be extended to series-parallel networks.

Proof of Theorem 1
We define $\Delta(f, o):=\sum_{C_{i} \in \mathcal{C}} \operatorname{cost}_{f}\left(C_{i}^{-}\right)-\sum_{C_{i} \in \mathcal{C}} \operatorname{cost}_{f}^{+}\left(C_{i}^{+}\right)$.
For affine delays, it holds:

$$
\operatorname{cost}(f) \leq \operatorname{cost}(o)+\frac{1}{4} \operatorname{cost}(f)+\Delta(f, o)
$$

Main Lemma. In a series-parallel network congestion game with affine delay functions, we have $\Delta(f, o) \leq \frac{1}{4} \operatorname{cost}(f)$.
Using the main lemma, we get that $\operatorname{cost}(f) \leq 2 \operatorname{cost}(o)$, which implies PoA ≤ 2.

The Greedy Decomposition
Given a flow g and an edge costs vector $c \in \mathbb{R}^{|E|}$, where $c_{e}=d_{e}\left(g_{e}\right)$, we compute a greedy decomposition $\bar{P}(g)=\left\{\bar{p}^{1}, \ldots, \bar{p}^{N}\right\}$ of g as follows:

- Set $g_{1}=g$, let $E_{1} \subseteq E$ be the edges with positive flows.

At each step:

- Compute the (s, t)-path \bar{p}^{i} in $\left(V, E_{i}\right)$ with highest cost w.r.t. c.
- Decrease the flow g_{i} by 1 on all the edges that belong to \bar{p}^{i} to define g_{i+1} and E_{i+1}.

Properties of the Greedy Decomposition
Let $P=\left\{p^{1}, \cdots . p^{N}\right\}$ be a decomposition of f and $x \in \mathbb{R}$. Define

$$
R(P, x):=\sum_{i}^{N} \max \left\{0, \operatorname{cost}_{f}\left(p^{i}\right)-x\right\} .
$$

Let $\bar{P}=\bar{P}(f)=\left\{\bar{p}^{1}, \cdots \cdot \bar{p}^{N}\right\}$ be a greedy decomposition of f.
(1) $\operatorname{cost}_{f}\left(\bar{p}^{i+1}\right) \geq \frac{1}{2} \sum_{j=1}^{i} \frac{\operatorname{cost}_{f}\left(\bar{p}^{j}\right)}{i}$ for $i \in[N-1]$.
(2) For any $x>0$, we have $R(\bar{P}, x) \geq R(P, x)$.

By these properties, we can show that when \mathcal{C} contains only (s, t)-cycles:

$$
\Delta(f, o) \leq R\left(\hat{P}, \frac{\operatorname{cost}(f)}{N}\right) \leq R\left(\bar{P}, \frac{\operatorname{cost}(f)}{N}\right) \leq \frac{1}{4} \operatorname{cost}(f) .
$$

Where \hat{P} is a decomposition containing all the paths C_{i}^{-}.
Extension to General Case
We show that $\Delta(f, o) \leq R\left(\bar{P}, \frac{\operatorname{cost}(f)}{N}\right)$ also holds for the case when there are some C_{i} are not from s to t.

- Define $\Delta(\mathcal{H}, f):=\sum_{C_{i} \in \mathcal{H}} \operatorname{cost}_{f}\left(C_{i}^{-}\right)-\sum_{C_{i} \in \mathcal{H}} \operatorname{cost}_{f}^{+}\left(C_{i}^{+}\right)$. Note that this definition works for any set \mathcal{H} of cycles. When $\mathcal{H}=\mathcal{C}$, we have $\Delta(\mathcal{C}, f)=\Delta(f, o)$.
- Assume that G is composed in parallel by G_{1}, \cdots, G_{k}.

We repeatedly apply a network shrinking operations to construct a network \hat{G}, a PNE flow \hat{f} and a set of cycles $\hat{\mathcal{C}}$, such that $\frac{\Delta(\hat{\mathcal{C}}, \hat{f})}{\operatorname{cost}(\hat{f})} \geq \frac{\Delta(\mathcal{C}, f)}{\operatorname{cost}(f)}$.

- Pick a parallel component G_{i} who contains a non- (s, t) cycle.
(2) G_{i} must be composed in series by two series-parallel subnetworks, we shrink one of them to get \hat{G}.
(2) Scale the delay functions of \hat{G} using parameters α and β.
(1) Update $\hat{\mathcal{C}}, \hat{f}$ according to \hat{G}.

At the end, all the cycles in $\hat{\mathcal{C}}$ are from s to t. Then we can conclude:

$$
\frac{\Delta(f, o)}{\operatorname{cost}(f)}=\frac{\Delta(\mathcal{C}, f)}{\operatorname{cost}(f)} \leq \frac{\Delta(\hat{\mathcal{C}}, \hat{f})}{\operatorname{cost}(\hat{f})} \leq \frac{1}{4} .
$$

(i)

(ii)

$d_{c}\left(f_{e}\right) \forall e \in E\left(\hat{G} \backslash \hat{G}_{1}\right)$

