The Price of Anarchy in Series-Parallel Network Congestion Games

Bainian Hao, Carla Michini

University of Wisconsin-Madison

Network Congestion Games

- N players
- An (s, t)-network G = (V, E).
- \forall player i, strategy set $X^i = \mathcal{P}$, the set of all (s, t)-paths.
- Set of states of the game $X = X^1 \times \cdots \times X^N$
- $\forall e \in E$ a nondecreasing delay function $d_e(x) = ax + b, a, b \ge 0$.
- Each state $(p^1, \ldots, p^N) \in X$ induces an (s, t)-flow of value N in G.
- The cost of a flow g is $cost(g) = \sum_{e \in E} g_e d_e(g_e)$.
- The cost of a path p in G w.r.t. g is $cost_q(p) = \sum_{e \in p} d_e(g_e)$.
- The augmented cost of a path p in G w.r.t. g is $\cot_q^+(p) = \sum_{e \in p} d_e(g_e + 1)$.
- A pure Nash equilibrium (PNE) is a state $(p^1, \ldots, p^i, \ldots, p^N)$ inducing flow f such that, for each $i \in [N]$ we have $\operatorname{cost}_f(p^i) \leq \operatorname{cost}_g(\tilde{p}^i) \quad \forall (p^1, \ldots, \tilde{p}^i, \ldots, p^N) \in X$ inducing flow g.
- A social optimum (SO) is a state inducing a flow o of minimum cost.
- The price of anarchy (PoA) is the ratio of cost of the most expensive PNE and cost of the SO.

Series Parallel Networks

An (s,t)-network is series-parallel if it consists of either a single edge (s,t) or of two series-parallel networks composed either in series or in parallel.

Given a PNE flow f and a social optimum flow o, we consider the flow o-f. When G is series-parallel, o-f contains only internally disjoint cycles (Fotakis, 2010). The set of cycles of o-f is denoted by C. For each cycle $C_i \in C$, we denote define two paths C_i^- and C_i^+ , where C_i^- contains edges where $f_e > o_e$ and C_i^+ contains edges where $f_e < o_e$.

Main result

Theorem 1. The price of anarchy of series-parallel network congestion games with affine delay functions is at most 2.

- The PoA of network congestion games with affine delay functions has a tight upper bound of 5/2 (Correa et al., 2019).
- On extension-parallel networks, a subclass of series-parallel networks, network congestion games with affine delay functions have a tight upper bound of 4/3 (Fotakis, 2010). However, this bound cannot be extended to series-parallel networks.

Proof of Theorem 1

We define $\Delta(f, o) := \sum_{C_i \in \mathcal{C}} \operatorname{cost}_f(C_i^-) - \sum_{C_i \in \mathcal{C}} \operatorname{cost}_f^+(C_i^+)$.

For affine delays, it holds:

$$cost(f) \le cost(o) + \frac{1}{4}cost(f) + \Delta(f, o)$$

Main Lemma. In a series-parallel network congestion game with affine delay functions, we have $\Delta(f, o) \leq \frac{1}{4} \text{cost}(f)$.

Using the main lemma, we get that $cost(f) \leq 2cost(o)$, which implies $PoA \leq 2$.

The Greedy Decomposition

Given a flow g and an edge costs vector $c \in \mathbb{R}^{|E|}$, where $c_e = d_e(g_e)$, we compute a greedy decomposition $\bar{P}(g) = \{\bar{p}^1, \dots, \bar{p}^N\}$ of g as follows:

• Set $g_1 = g$, let $E_1 \subseteq E$ be the edges with positive flows.

At each step:

- Compute the (s,t)-path \bar{p}^i in (V,E_i) with highest cost w.r.t. c.
- Decrease the flow g_i by 1 on all the edges that belong to \bar{p}^i to define g_{i+1} and E_{i+1} .

decomposition P^* of PNE flow f — greedy decomposition \bar{P} of f

Properties of the Greedy Decomposition

Let $P=\{p^1,\cdots .p^N\}$ be a decomposition of f and $x\in\mathbb{R}$. Define $R(P,x):=\sum_i^N\max\big\{0, \mathrm{cost}_f(p^i)-x\big\}\,.$

Let $\bar{P} = \bar{P}(f) = \{\bar{p}^1, \dots, \bar{p}^N\}$ be a greedy decomposition of f.

- - For any x > 0, we have $R(\bar{P}, x) \ge R(P, x)$.

By these properties, we can show that when $\mathcal C$ contains only (s,t)-cycles:

$$\Delta(f, o) \le R(\hat{P}, \frac{\cot(f)}{N}) \le R(\bar{P}, \frac{\cot(f)}{N}) \le \frac{1}{4}\cot(f).$$

Where \hat{P} is a decomposition containing all the paths C_i^- .

Extension to General Case

We show that $\Delta(f, o) \leq R(\bar{P}, \frac{\cot(f)}{N})$ also holds for the case when there are some C_i are not from s to t.

- Define $\Delta(\mathcal{H}, f) := \sum_{C_i \in \mathcal{H}} \operatorname{cost}_f(C_i^-) \sum_{C_i \in \mathcal{H}} \operatorname{cost}_f^+(C_i^+)$. Note that this definition works for any set \mathcal{H} of cycles. When $\mathcal{H} = \mathcal{C}$, we have $\Delta(\mathcal{C}, f) = \Delta(f, o)$.
- Assume that G is composed in parallel by G_1, \dots, G_k .

We repeatedly apply a network shrinking operations to construct a network \hat{G} , a PNE flow \hat{f} and a set of cycles \hat{C} , such that $\frac{\Delta(\hat{C},\hat{f})}{\cot(\hat{f})} \geq \frac{\Delta(C,f)}{\cot(f)}$.

- Pick a parallel component G_i who contains a non-(s,t) cycle.
- $oldsymbol{Q}$ G_i must be composed in series by two series-parallel subnetworks, we shrink one of them to get \hat{G} .
- 3 Scale the delay functions of \hat{G} using parameters α and β .
- 4 Update \hat{C} , \hat{f} according to \hat{G} .

At the end, all the cycles in $\hat{\mathcal{C}}$ are from s to t. Then we can conclude:

$$\frac{\Delta(f, o)}{\operatorname{cost}(f)} = \frac{\Delta(\mathcal{C}, f)}{\operatorname{cost}(f)} \le \frac{\Delta(\hat{\mathcal{C}}, \hat{f})}{\operatorname{cost}(\hat{f})} \le \frac{\Delta(\hat{\mathcal{C}}, \hat{f})}{\operatorname{cost}(\hat{f})}$$

