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-
Agenda

In the next two days, we will discuss

e Two-stage stochastic mixed-integer programs (MIPs):

e Large-scale MIPs
* How to decompose?

o Desirable algorithmic properties: Finite convergence, scalability

o Other stochastic (continuous) optimization problems

¢ Risk measures/distributional ambiguity modeled as MIPs

o Exploit combinatorial structure for improved formulations

e Theory, algorithm design, computations, and (some) applications.
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|
Outline

@ Two-Stage Stochastic Integer Programming
o Two-Stage Stochastic Linear Programming
o Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming
@ Two-Stage Stochastic Pure Integer Programming
o Two-Stage Stochastic Mixed-Integer Programming

© Chance-Constrained Programming
o Static Joint Chance-Constrained Programming
o Two-stage (Dynamic) Chance-Constrained Programming
o Distributionally Robust Chance-Constrained Programming
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Two-Stage Stochastic Integer Programming
Outline

@ Two-Stage Stochastic Integer Programming
o Two-Stage Stochastic Linear Programming
o Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming
@ Two-Stage Stochastic Pure Integer Programming
o Two-Stage Stochastic Mixed-Integer Programming
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Two-Stage Stochastic Integer Programming

Motivation and Scope

Motivation:
e Large capital investment decisions must hedge against uncertain future
o First stage: Strategic decisions (Warehouse/data center/power generator locations)
e Second stage: Operational decisions (Shipments/routing/distribution)

o Applications: Energy, telecommunications, healthcare, supply chain, finance ...
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Two-Stage Stochastic Integer Programming

Motivation and Scope

Motivation:
e Large capital investment decisions must hedge against uncertain future
o First stage: Strategic decisions (Warehouse/data center/power generator locations)
e Second stage: Operational decisions (Shipments/routing/distribution)
o Applications: Energy, telecommunications, healthcare, supply chain, finance ...
Scope:
e Focus on Benders type methods

e Will not cover other methods such as Lagrangian relaxation, column generation, etc.
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An Example: Stochastic Server Location and Sizing (SSLS)

Applications:

o Preparation and execution of disaster plans

o Location and sizing of data centers in cloud computing

e Supply chain planning with disruptions

o Battery charging infrastructure for electric vehicles
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Two-Stage Stochastic Integer Programming

Planning Locations to Hedge Against Demand Uncertainty

Server D ' D a

\_/ \_/
Client () [ ]
/ M ' D
\_/ N

There are two sets of decisions:

o First stage: Determine data center locations (binary) and number of servers to locate
(general integer)

o Second stage (once random demand is realized): Allocate servers to customers

o Constraints: capacity, demand satisfaction, etc.
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Two-Stage Stochastic Integer Programming

Deterministic Server Location Problem

® Observed demand nodes, B Optimal server location

Scenario 1:

/.D
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Two-Stage Stochastic Integer Programming

Deterministic Server Location Problem

® Observed demand nodes, B Optimal server location

Scenario 2:
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Scenario 1:
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Two-Stage Stochastic Integer Programming

Deterministic Server Location Problem

® Observed demand nodes, B Optimal server location

Scenario 2:

] L

[] []

Scenario 1:

Suppose each scenario is equally likely? What is the optimal server location plan?
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Stage Stochastic Integer Programming

Stochastic Server Location Problem

Hedged Optimal Solution
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Two-Stage Stochastic Integer Programming

Stochastic Server Location Problem

Hedged Optimal Solution
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Dynamic Response to Demands/Threats

Scenario 1:

o ¥
N =
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Two-Stage Stochastic Integer Programming

Stochastic Server Location Problem

Hedged Optimal Solution

Dynamic Response to Demands/Threats

Kiigiikyavuz (IPCO Summer School)

Scenario 2:
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R Y R T A A Ll Two-Stage Stochastic Linear Programming
Outline

@ Two-Stage Stochastic Integer Programming
o Two-Stage Stochastic Linear Programming
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

Standard (Risk-Neutral) Stochastic Programming Formulation

e &: a random vector with support Q

e Order of events:
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

Standard (Risk-Neutral) Stochastic Programming Formulation

e &: a random vector with support Q

e Order of events: x = w — y(w)
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

Standard (Risk-Neutral) Stochastic Programming Formulation

e &: a random vector with support Q

e Order of events: x — w — y(w)

o x € X:={x€eR["™ xZ: Ax > b}: first-stage decision vector
o y(w) € Rf: second-stage decision vector for each w

e X,Y: integer, continuous and sign restrictions on x, y, resp.
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

Standard (Risk-Neutral) Stochastic Programming Formulation

e &: a random vector with support Q

e Order of events: x — w — y(w)

o x € X:={x€eR["™ xZ: Ax > b}: first-stage decision vector
o y(w) € Rf: second-stage decision vector for each w

e X,Y: integer, continuous and sign restrictions on x, y, resp.
A two-stage stochastic program:

min ¢ x +Eg(h(x,o))

s.t. Ax>b,
X € X,
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Two-Stage Stochasic Lincar Programming
Standard (Risk-Neutral) Stochastic Programming Formulation

e &: a random vector with support Q

e Order of events: x — w — y(w)

o x € X:={x€eR["™ xZ: Ax > b}: first-stage decision vector
o y(w) € Rf: second-stage decision vector for each w

e X,Y: integer, continuous and sign restrictions on x, y, resp.
A two-stage stochastic program:

min ¢ x +Eg(h(x,o))
s.t. Ax>b,
X € X,

where
h(x,w) =min yo
v —gw)'y=0
W(w)y > r(w) — T(w)x
yey.
o All second stage data can be random (T (w), W(w), r(w), g(w))
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EETY S PR Sl Two-Stage Stochastic Linear Programming

Finite sample space assumption

o We consider the setting where 2 is a finite sample space:

Q={wt..., 0"}
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

Finite sample space assumption

o We consider the setting where 2 is a finite sample space:

Q={u'...,0"}

o Even if Q is not finite, we can approximate it via an empirical distribution (see the theory of
Sample Average Approximation (SAA), e.g., [Shapiro et al., 2009].
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Finite sample space assumption

o We consider the setting where 2 is a finite sample space:

Q={u'...,0"}
o Even if Q is not finite, we can approximate it via an empirical distribution (see the theory of

Sample Average Approximation (SAA), e.g., [Shapiro et al., 2009].

e Often, N is very large.
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

Finite sample space assumption

o We consider the setting where 2 is a finite sample space:

Q={wt..., 0"}

o Even if Q is not finite, we can approximate it via an empirical distribution (see the theory of
Sample Average Approximation (SAA), e.g., [Shapiro et al., 2009].

e Often, N is very large.

e Let p; € [0,1]: probability of scenario w' € Q, where e Pi =1
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

Deterministic Equivalent Formulation

min  c'x  +pig " (Wy(wh) +pg T (W)y(w?) +--- +png T (WN)y(wV)

st Ax >b
T(wh)x +W(wh)y(w?) > r(wh)
T (w?)x +W(w?)y(w?) > r(w?)
T WMy ) > ()

xeX, yw)ey,iecl[N]

It's HUGE!!
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

Review of Benders Decomposition Algorithm

Algorithms for two-stage stochastic program with continuous second-stage variables:
Benders' decomposition [Benders, 1962], L-shaped method [van Slyke and Wets, 1969]

Master Problem MP¥ at iteration k = 0,1, ...,

MPX: min c¢'x+ Z PiNy,i
wie
st AR(x,m) > bk,
xeX

where 7); approximates the second-stage value function of scenario ;.

o A¥(x,m) > b¥ includes:

e Ax>b
e Optimality cuts generated from the subproblems in iterations j = 1,...,k — 1
o Feasibility cuts generated from the subproblems in iterations j =1,...,k—1
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RN PP T (T T WIV O TPl Two-Stage Stochastic Linear Programming
Subproblems

Subproblem SP¥(x,w), w € Q at iteration k =0,1,...,

Given (x,7), the solution of the master problem at iteration k, solve for each w:

SPK(x,w):  h¥(x,w):=min g(w)"y(w)
st W(w)y(w) > r(w) — T(w)x,
y(w) € R,

Let 1% be the dual vector of the subproblem SP*(x,w).
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RN PP T (T T WIV O TPl Two-Stage Stochastic Linear Programming
Subproblems

Subproblem SP¥(x,w), w € Q at iteration k =0,1,...,

Given (x,7), the solution of the master problem at iteration k, solve for each w:

SPK(x,w):  h¥(x,w):=min g(w)"y(w)
st W(w)y(w) > r(w) — T(w)x,
y(w) € R,

Let 1% be the dual vector of the subproblem SP*(x,w).

o If SP¥(x,w) is feasible, but 1, < h¥(x,w), then add the optimality cut

o > 0k (r(w) — T(w)x)

o If SPX(x,w) is infeasible, then its dual is unbounded, so using the corresponding dual ray
K, add the feasibility cut

0> vk (r(w) — T(w)x)
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QRTINS PR I A IS Two-Stage Stochastic Linear Programming

((r(w) = T(w)x) Tl

- (r(w) = T(w)x) Tyl

X

(r(w) = T(w)x) T9d

(r(w) — T@)) Tl

Figure 1: Piecewise-linear function, 7, (x), for continuous recourse
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o-Stage Stochastic Integer Programming Classification Scheme for Two-Stage Stoct ic Mixed-Integer Prog ing
Outline

@ Two-Stage Stochastic Integer Programming

o Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming
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QVSSIEEORS T BRI LIS SGEET Il Classification Scheme for Two-Stage Stochastic Mixed-Integer Prog ing

Classification Scheme For Stochastic MIPs

B = Stages with Binary decision variables
C = Stages with Continuous decision variables
D = Stages with Discrete (general integer) decision variables.

For example, two-stage stochastic MIP with continuous recourse has: B = D = {1}, C = {1, 2}.
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Two-Stage Stochastic Integer Programming Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming

Literature Overview

First-stage Second-stage
Laporte and Louveaux (1993)
Sen and Sherali (2006) Binary Mixed-integer
Carge and Tind (1997)
Sherali and Zhu (2007) Mixed-binary Mixed-binary
Carge and Tind (1998) Mixed-integer | Integer
Schultz et al. (1998) Continuous Integer
Ahmed et al. (2004) Mixed-binary | Integer
Sherali and Fraticelli (2002)
Sen and Higle (2005)
Ntaimo and Sen (2005, 2008) | Binary Mixed-binary
Ntaimo (2009)
Gade, K., Sen (2012) Binary Integer
Kong et al. (2006)
Trapp et al. (2013) Integer Integer

Zhang and K. (2014)

Qi and Sen (2017, 2021+) Mixed-Integer

Mixed-Integer
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PR ER T NSO EE NIl Two-Stage Stochastic Pure Integer Programming
Outline

@ Two-Stage Stochastic Integer Programming

@ Two-Stage Stochastic Pure Integer Programming
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A Two-Stage Stochastic Integer Program

Consider binary first stage and general integer second stage variables (i.e., B={1,2}, D={2}, C=0)

min ¢ x + E[h(x,®)]
st. Ax>b
x €B",

where for a particular realization (scenario) w of &, h(x,w) is defined as

h(x,w) =min y

st. yo—gw)y=0
W(w)y > r(w) — T(w)x

Yo € Z,y € Z?
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A Two-Stage Stochastic Integer Program

Consider binary first stage and general integer second stage variables (i.e., B={1,2}, D={2}, C=0)

min ¢ x + E[h(x,®)]
st. Ax>b
x €B",

where for a particular realization (scenario) w of &, h(x,w) is defined as

h(x,w) =min y

st. yo—gw)y=0
W(w)y > r(w) — T(w)x

Yo € Z,y € Z?

® & is defined on (€2, F,P) and has finite support

e Y(x,w):={w€Zye€E Zf’f “yo—g(w) Ty =0, W(w)y > r(w) — T(w)x}.
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A Two-Stage Stochastic Integer Program

Consider binary first stage and general integer second stage variables (i.e., B={1,2}, D={2}, C=0)

min ¢ x + E[h(x,®)]
st. Ax>b
x €B",

where for a particular realization (scenario) w of &, h(x,w) is defined as

h(x,w) =min y

st. yo—gw)y=0
W(w)y > r(w) — T(w)x

Yo € Z,y € Z?

® & is defined on (€2, F,P) and has finite support
o Y(x,w)={y €Z,y € Z? : yo — gw) Ty =0, W(w)y > r(w) — T(w)x}.

® Relatively complete recourse
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A Two-Stage Stochastic Integer Program

Consider binary first stage and general integer second stage variables (i.e., B={1,2}, D={2}, C=0)

min ¢ x + E[h(x,®)]
st. Ax>b
x €B",

where for a particular realization (scenario) w of &, h(x,w) is defined as

h(x,w) =min y

st. yo—gw)y=0
W(w)y > r(w) — T(w)x

Yo € Z,y € Z?
® & is defined on (€2, F,P) and has finite support
o Y(x,w)={y €Z,y € Z? : yo — gw) Ty =0, W(w)y > r(w) — T(w)x}.
® Relatively complete recourse

® SIP has a finite optimum
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Problem Structure

Deterministic Equivalent of SIP

min ¢ x +pg(w!) Ty(w) + pg(@) Ty(w?) 4+ pugw") Ty(w")
Ax >b
T(w')x +W(why(w?) > r(w)
T(w?)x + W(w)y(w?) > r(w?)
T(w")x +W(W")y(w) > r(w)

x€B", y(w) €ZP?,we Q.

e Large-scale integer program

e For a fixed x € X, SIP decomposes by scenario
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Value Function Reformulation and Challenges

e Recall XN&X ={x € B": Ax > b}.

e Standard approach in L-shaped decomposition is the value function reformulation of SIP:

min x40 2 0} Q(x) = E(h(x,3))
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Value Function Reformulation and Challenges

e Recall XN&X ={x € B": Ax > b}.

e Standard approach in L-shaped decomposition is the value function reformulation of SIP:

XegigX{CTX +n:n2Q(x)}  Qx) = E(h(x,0))

e If second stage is a linear program — h(-,w), w € Q: value function of an LP. It is piecewise
linear and convex. Benders' decomposition and L-Shaped decomposition exploit this property.
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NS ETCB T BRI NN AE TNl Two-Stage Stochastic Pure Integer Programming
Challenge for SIP

If second stage is an integer program, then h(-,w): value function of an integer program [Blair
and Jeroslow, 1982]. It is non-linear & non-convex.

o"x + E[Q(x,0)]
g 5 3

!
&
3

From [Ahmed et al., 2004]
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(S EECRS foel ER T DITY T T  Two-Stage Stochastic Pure Integer Programming
Challenge for SIP

If second stage is an integer program, then h(-,w): value function of an integer program [Blair
and Jeroslow, 1982]. It is non-linear & non-convex.

o"x + E[Q(x,0)]

From [Ahmed et al., 2004]

How to create “good” lower bounding approximations practically?
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L-Shaped Algorithms for 2-Stage SMIP - Literature

o Integer L-shaped method [Laporte and Louveaux, 1993]: Binary first stage, mixed-integer
second stage - First stage B&B and linear optimality cuts. Solve second stage MIPs to
optimality. Improved in [Angulo et al., 2016]
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L-Shaped Algorithms for 2-Stage SMIP - Literature

o Integer L-shaped method [Laporte and Louveaux, 1993]: Binary first stage, mixed-integer
second stage - First stage B&B and linear optimality cuts. Solve second stage MIPs to
optimality. Improved in [Angulo et al., 2016]

o Disjunctive Cuts for mixed-binary second stage: e.g., [Carge and Tind, 1997], [Sherali and
Fraticelli, 2002], [Sen and Higle, 2005], [Sen and Sherali, 2006], [Ntaimo and Sen, 2007],
[Ntaimo, 2009].
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L-Shaped Algorithms for 2-Stage SMIP - Literature

o Integer L-shaped method [Laporte and Louveaux, 1993]: Binary first stage, mixed-integer
second stage - First stage B&B and linear optimality cuts. Solve second stage MIPs to
optimality. Improved in [Angulo et al., 2016]

o Disjunctive Cuts for mixed-binary second stage: e.g., [Carge and Tind, 1997], [Sherali and
Fraticelli, 2002], [Sen and Higle, 2005], [Sen and Sherali, 2006], [Ntaimo and Sen, 2007],
[Ntaimo, 2009].

o Computations: e.g., [Laporte et al., 2002], [Ntaimo and Sen, 2005, 2008], [Yuan and Sen,
2009], [Ntaimo and Tanner, 2008].
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L-Shaped Algorithms for 2-Stage SMIP - Literature

o Integer L-shaped method [Laporte and Louveaux, 1993]: Binary first stage, mixed-integer
second stage - First stage B&B and linear optimality cuts. Solve second stage MIPs to
optimality. Improved in [Angulo et al., 2016]

o Disjunctive Cuts for mixed-binary second stage: e.g., [Carge and Tind, 1997], [Sherali and
Fraticelli, 2002], [Sen and Higle, 2005], [Sen and Sherali, 2006], [Ntaimo and Sen, 2007],
[Ntaimo, 2009].

o Computations: e.g., [Laporte et al., 2002], [Ntaimo and Sen, 2005, 2008], [Yuan and Sen,
2009], [Ntaimo and Tanner, 2008].

o Global Optimization and other approaches for pure integer second stage: e.g., [Ahmed et al.,
2004], [Kong et al., 2006], [Schultz et al., 1998], [Schultz and Hemmecke, 2003],[Klein, 2020]

e Gomory cuts for SMIP: [Carge and Tind, 1998]
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Two-Stage Stochasic Pure Integer Programming
Gomory Fractional Cuts (GFC) for Deterministic Pure IPs

e Given first-stage vector X, solve the LP relaxation of the second-stage IP with simplex.

e Let B, N - Basic and nonbasic column index sets of LP.
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Two-Stage Stochasic Pure Integer Programming
Gomory Fractional Cuts (GFC) for Deterministic Pure IPs

e Given first-stage vector X, solve the LP relaxation of the second-stage IP with simplex.
e Let B, N - Basic and nonbasic column index sets of LP.

* Re-write source row, with v; € Z, as

yB, + > Wiy = vi(X),
JEN
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Two-Stage Stochasic Pure Integer Programming
Gomory Fractional Cuts (GFC) for Deterministic Pure IPs

e Given first-stage vector X, solve the LP relaxation of the second-stage IP with simplex.
e Let B, N - Basic and nonbasic column index sets of LP.
* Re-write source row, with v; € Z, as

yB, + > Wiy = vi(X),
JEN

e+ > [Wyly; >y, + Y Wiy = vi(X).
JEN JEN ‘;;Z-’

E€Z
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Two-Stage Stochasic Pure Integer Programming
Gomory Fractional Cuts (GFC) for Deterministic Pure IPs

e Given first-stage vector X, solve the LP relaxation of the second-stage IP with simplex.
e Let B, N - Basic and nonbasic column index sets of LP.
* Re-write source row, with v; € Z, as

yB, + > Wiy = vi(X),
JEN

e+ > [Wyly; >y, + Y Wiy = vi(X).
JEN JEN ‘;;Z-’

E€Z

Let £(8) := [B] — 8-
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Two-Stage Stochasic Pure Integer Programming
Gomory Fractional Cuts (GFC) for Deterministic Pure IPs

e Given first-stage vector X, solve the LP relaxation of the second-stage IP with simplex.
e Let B, N - Basic and nonbasic column index sets of LP.
* Re-write source row, with v; € Z, as

yB, + > Wiy = vi(X),
JEN

e+ > [Wyly; >y, + Y Wiy = vi(X).
JEN JEN ‘;;Z-’

E€Z

Let £(8) := [8] — B.
e Derive a GFC : yp, + ZjeNfV_Vij])’j > [vi(X)].

or equivalently,
> &wy)y; > EilR)).
JEN
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Two-Stage Stochasic Pure Integer Programming
Gomory Fractional Cuts (GFC) for Deterministic Pure IPs

e Given first-stage vector X, solve the LP relaxation of the second-stage IP with simplex.
e Let B, N - Basic and nonbasic column index sets of LP.

* Re-write source row, with v; € Z, as

yB, + > Wiy = vi(X),
JEN

e+ > [Wyly; >y, + Y Wiy = vi(X).
JEN JEN ‘;;Z-’

E€Z

Let £(8) := [8] — B.
e Derive a GFC : yp, + ZjeNfV_Vij])’j > [vi(X)].

or equivalently,
> &wy)y; > EilR)).
JEN

o A pure cutting plane algorithm using GFC is finitely convergent if one chooses the source row
as the variable with the smallest index and use lexicographic dual simplex [Gomory, 1963]
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EV-LRS Tl ERAIM DI G EIE T LA Two-Stage Stochastic Pure Integer Programming

Gomory Cuts for SMIP: [Carge and Tind, 1998]

Continuous first stage, pure integer second stage.

o Solve the second stage problem using Gomory cuts to optimality for each x,w
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o Construct the optimal subadditive dual function C,, (Chvatal function - nonlinear and
nonconvex)
Cu(d) = V[Mi[Mi_y--- [Ma[Mid]]---], where M;, V are rational matrices

o First-stage optimality cuts:

1> puCu((r(w) = T(w)x))

weQ
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o It is possible to represent C,, using integer variables - growth is explosive even for a single x
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Two-Stage Stochasic Pure Integer Programming
Gomory Cuts for SMIP: [Carge and Tind, 1998]

Continuous first stage, pure integer second stage.

o Solve the second stage problem using Gomory cuts to optimality for each x,w

o Construct the optimal subadditive dual function C,, (Chvatal function - nonlinear and
nonconvex)
Cu(d) = V[Mi[Mi_y--- [Ma[Mid]]---], where M;, V are rational matrices

o First-stage optimality cuts:

1> puCu((r(w) = T(w)x))

weN
o It is possible to represent C,, using integer variables - growth is explosive even for a single x
o Conceptual algorithm, computationally unattractive

Research Question: Can we use Gomory cuts to develop a computationally amenable L-shaped
algorithm for SIP?
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Decomposition-based cutting plane approximations - Strategy

o Partition first stage and second stage
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e Solve LP relaxation of second stage sub-problems for given X for each w € Q
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Decomposition-based cutting plane approximations - Strategy

o Partition first stage and second stage

¢ Solve the master problem (first stage) and obtain X

e Solve LP relaxation of second stage sub-problems for given X for each w € Q

o If the sub-problem is non-integral, generate violated cut(s) 7(w) Ty > 7o and re-solve sub-LP
o Lift this inequality to obtain 7(w) Ty > mo(x,w)

e Add Benders optimality cut to the master problem
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Decomposition-based cutting plane approximations - Strategy

o Partition first stage and second stage

¢ Solve the master problem (first stage) and obtain X

e Solve LP relaxation of second stage sub-problems for given X for each w € Q

o If the sub-problem is non-integral, generate violated cut(s) 7(w) Ty > 7o and re-solve sub-LP
o Lift this inequality to obtain 7(w) Ty > mo(x,w)

e Add Benders optimality cut to the master problem

e For mixed binary second stage, and disjunctive cuts, mo(+,w) is piecewise linear concave [Sen and
Higle, 2005]

e What about general integers and Gomory cuts?
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Lifting Gomory Cuts for Second Stage

min{—x + h(x) : x € {0,1}}
h(x) =min{—y1:2y1 +3y2 =4+ x,y1,2 € Z+}

Y2

Y1
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Lifting Gomory Cuts for Second Stage

o min{—x + h(x) : x € {0,1}}, where h(x) = min{—y1 : 2y1 +3y2 =4+ x,y1,y2 € Z+}
o First-stage solution: x =1
5

* Source row: y1 + 3y2 = 3

Kiigiikyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 31 / 133



Lifting Gomory Cuts for Second Stage

o min{—x + h(x) : x € {0,1}}, where h(x) = min{—y1 : 2y1 +3y2 =4+ x,y1,y2 € Z+}
o First-stage solution: x =1
e Source row: y1 + %y2 = %

e Gomory Cut: %yz > % (Not valid for x =y» = 0,y; = 2)

Y2

Kiigiikyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 31 / 133



Lifting Gomory Cuts for Second Stage

min{—x + h(x) : x € {0,1}}, where h(x) = min{—y1 : 2y1 +3y2 =4+ x,y1,y2 € Z+}

First-stage solution: x =1

* Source row: y1 + 3y2 = 3

e Gomory Cut: %yz > % (Not valid for x =y» = 0,y; = 2)

Y2

o Carge and Tind approach: %yg > [31— 5 (Nonlinear)
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PR ER T NSO EE NIl Two-Stage Stochastic Pure Integer Programming

Desiderata

o A second-stage cut that is valid for all x.

o A first-stage cut that is affine in x.

e Finite convergence
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Lifting Gomory Cuts for Second Stage

Want the cut to be valid for all x. Let x’ := 1 — x. Write source row as:

1 1
G Cut: =x' 4+ 2y > =
omory Cu 2x +2y2_2
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Lifting Gomory Cuts for Second Stage

Want the cut to be valid for all x. Let x’ := 1 — x. Write source row as:

3 (1—x")
2y, =2
}’1+2)/2 + 2
1, 1 1 , o
Gomory Cut: 5% +§y2 > 5 =w>1-—x"=x (affine in x)
Y2
® o o [ ]
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EV-LRS Tl ERAIM DI G EIE T LA Two-Stage Stochastic Pure Integer Programming

Gomory Fractional Cuts - RHS as functions of x

e Assume w.l.o.g (by complementation, if necessary) that X; =0,Vj =1,...,n;.
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Gomory Fractional Cuts - RHS as functions of x

e Assume w.l.o.g (by complementation, if necessary) that X; =0,Vj =1,...,n;.

e Fixx e X, e Q. B,N,B,N - Basis, nonbasic columns, basic and non-basic index sets of
LP hy(x,@). Re-write second stage constraints Wy = r — Tx:

B Nyy =B 'r—B l'Tx=:v
yB+ YN~ X =:v
V_V,'j P r
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LP hy(x,@). Re-write second stage constraints Wy = r — Tx:

B Nyy =B 'r—B l'Tx=:v
yB+ YN~ X =:v
V_V,'j P r

o Re-write source row, with v; € Z, in terms of x as

ny
3 > = i
JEN j=1
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B Nyy =B 'r—B l'Tx=:v
yB+ YN~ X =:v
V_V,'j P r

o Re-write source row, with v; € Z, in terms of x as

ny
3 > = i
JEN j=1

o Let £(B) := [B] — B. Derive a parametric GFC in the space of (x, y)-variables

D &wy)y; > &) = > E(i)x-

JEN j=1
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Gomory Fractional Cuts - RHS as functions of x

e Assume w.l.o.g (by complementation, if necessary) that X; =0,Vj =1,...,n;.

e Fixx e X, e Q. B,N,B,N - Basis, nonbasic columns, basic and non-basic index sets of
LP hy(X,@). Re-write second stage constraints Wy = r — Tx:

B Nyy =B 'r—B l'Tx=:v
yB+ YN~ X =:v
V_V,'j P r

o Re-write source row, with v; € Z, in terms of x as

ny
3 > = i
JEN j=1

Let £(B) := [B] — B. Derive a parametric GFC in the space of (x, y)-variables

D &wy)y; > &) = > E(i)x-

JEN j=1

e When x = X we recover the original GFC. This GFC is valid for all binary x-variables.
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Gomory Fractional Cuts - RHS as functions of x

e Assume w.l.o.g (by complementation, if necessary) that X; =0,Vj =1,...,n;.

e Fixx e X, e Q. B,N,B,N - Basis, nonbasic columns, basic and non-basic index sets of
LP hy(X,@). Re-write second stage constraints Wy = r — Tx:

B Nyy =B 'r—B l'Tx=:v
yB+ YN~ X =:v
V_V,'j P r

o Re-write source row, with v; € Z, in terms of x as

ny
3 > = i
JEN j=1

Let £(B) := [B] — B. Derive a parametric GFC in the space of (x, y)-variables

D &wy)y; > &) = > E(i)x-

JEN j=1

e When x = X we recover the original GFC. This GFC is valid for all binary x-variables.

Furthermore, 7(&) Ty > mo(x, &), mo(+,w) is affine.
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Gomory Driven Decomposition Algorithm - Notation

o Second-stage linear approximations at the beginning of iteration k
hif*l(x,w) =minyp
vo—gw)y=0
Wkil(w)y > rkil(w) — kal(w)x
vo €ER,y € R'f.

o 9K (w): Dual multipliers of second-stage LP at iteration k
e y¥(x,w): Lex-smallest solution to second-stage LP at iteration k, given x,w

e Lower bounding Master Problem MP¥
minc' x4 17
Ax > b
0> S puwh) T (rH(w) = TH@)X) e =1,...

we
x €B™,neR.

 k

e LBk, UB¥ Lower and upper bounds on the SIP optimal solution
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(S =-ORET BRI DS SIE NSl Two-Stage Stochastic Pure Integer Programming

Gomory Driven Decomposition Algorithm is finitely convergent [Gade, , and
Sen, 2014]

Initialization: k = 1, LB' = —oc0, UB' = o0
WO W) = W(w),T'(w) = T(w),r"(w) = r(w)
e X

Y

Solve ff~'(z*,w), we Q

Yes No Vw :y(w) ¢ Z"2Ht
Generate Optimality Cuf [Get GFC from lowest frac index
Update UB**1 [Re-solve using Lex-Dual Simplex
Generate Optimality Cut

Solve MP*. Obtain z**+1, LBF+1
k=k+1

N
Yes BF < UB*?
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age Stochastic Integer Program Two-Stage Stochastic Pure Integer Programming

Proof of Convergence - Sketch

o Let xk =xand xt =%, t> k

.
o Let a(%,w) = (W (% @) AT R W) v TN (R W), [T (R @)T,0,. 0 ,0)
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Proof of Convergence - Sketch

o Let xk =xand xt =%, t> k
-
o Let ay(X,w) = (ygfl(i,w),ylk z,w),. .. ,k7 1R, w), ]—yiifl(f(,w)],o,...,O)

e Gomory cut for first fractional y; and lex-dual simplex gives yR(R,w) = ax(X,w)
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Proof of Convergence - Sketch

o Let xk =xand xt =%, t> k

Let an(%,) = (W' (%,0) M%), Y Th (R ) VS (5,0, 0)

Gomory cut for first fractional y; and lex-dual simplex gives yR(R,w) = ax(X,w)
e Gomory cuts added during iterations k +1,...,t — 1 are all valid for Y(x,w).

e So yt (R, w) = y*(X,w) = ax(X,w).

Kiigiikyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 37 / 133



RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Proof of Convergence - Sketch

o Let xk =xand xt =%, t> k

- k—1(c k-1 k—1(c T
o Let ay(X,w) = (yo (x,w),y; T(Xw), ... :k—l(x w), [y (X,w)],O,...,O)
e Gomory cut for first fractional y; and lex-dual simplex gives yR(R,w) = ax(X,w)
e Gomory cuts added during iterations k +1,...,t — 1 are all valid for Y(x,w).

e So yt (R, w) = y*(X,w) = ax(X,w).

o ai(X,w) = yt~1(X,w) by definition.

Kiigiikyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 37 / 133



RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Proof of Convergence - Sketch

o Let xk =xand xt =%, t> k

- k—1(c k-1 k—1(c T
o Let ay(X,w) = (yo (x,w),y; T(Xw), ... :k—l(x w), [y (X,w)],O,...,O)
e Gomory cut for first fractional y; and lex-dual simplex gives yR(R,w) = ax(X,w)
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Proof of Convergence - Sketch

o Let xk =xand xt =%, t> k

- Let (%) = (W R W) AT R W),y TR w), [T R )10, )
e Gomory cut for first fractional y; and lex-dual simplex gives yR(R,w) = ax(X,w)
e Gomory cuts added during iterations k +1,...,t — 1 are all valid for Y(x,w).

e So yt (R, w) = y*(X,w) = ax(X,w).

o ai(X,w) = yt~1(X,w) by definition.

e Hence at(X,w) > ay(X,w).

e In finitely many steps, we obtain integral solutions for a given (x,w) for all k > K(X,w).
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Proof of Convergence - Sketch

o Let xk =xand xt =%, t> k

- Let (%) = (W R W) AT R W),y TR w), [T R )10, )

e Gomory cut for first fractional y; and lex-dual simplex gives yR(R,w) = ax(X,w)

e Gomory cuts added during iterations k +1,...,t — 1 are all valid for Y(x,w).

e So yt (R, w) = y*(X,w) = ax(X,w).

o ai(X,w) = yt~1(X,w) by definition.

e Hence at(X,w) > ay(X,w).

e In finitely many steps, we obtain integral solutions for a given (x,w) for all k > K(X,w).

o Finitely many (x,w) € X x Q = in finitely many steps hf_f(x,w) gives integral solutions
V(x,w) with k > K = sup, .,y K(x,w) (worst case).
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LRVES EECRS fote BTl IS EET L Two-Stage Stochastic Pure Integer Programming

Proof of Convergence - Sketch

o Let xk =xand xt =%, t> k

- Let (%) = (W R W) AT R W),y TR w), [T R )10, )

e Gomory cut for first fractional y; and lex-dual simplex gives yR(R,w) = ax(X,w)

e Gomory cuts added during iterations k +1,...,t — 1 are all valid for Y(x,w).

e So yt (R, w) = y*(X,w) = ax(X,w).

o ai(X,w) = yt~1(X,w) by definition.

e Hence at(X,w) > ay(X,w).

e In finitely many steps, we obtain integral solutions for a given (x,w) for all k > K(X,w).

o Finitely many (x,w) € X x Q = in finitely many steps h‘g(x,w) gives integral solutions
V(x,w) with k > K = sup, .,y K(x,w) (worst case).

e Then the dual polyhedra of sub-problems remain fixed. Obtain full reformulation of SIP in
(x,m).
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RS ET-CRS I ER TN DT G EIETI LA Two-Stage Stochastic Pure Integer Programming

Example from Literature

Variations of this example appear in [Schultz et al., 1998], [Sen et al., 2003], [Ahmed et al., 2004]

min  — 1.5x; — 4xo + E[f(x,D)]
st. x€{0,1}?
where
f(x,w) =min y
s.t.  yo+ 16y + 19y» + 23y3 + 28y, — 100R =0
2y1 +3y2 +4y3 +5ys — R < rn(w) — x1
6y1 +1y2 +3y3 +2ya — R < n(w) — x2
Yo €Z,y;€{0,...,5},i=1,...,4 R€Z4,
Q= {172}7[)1 =p2=05.
(n(1), (1)) = (10,4),(r1(2), n(2)) = (13, 8).
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Example from Literature

Variations of this example appear in [Schultz et al., 1998], [Sen et al., 2003], [Ahmed et al., 2004]

min  — 1.5x; — 4xo + E[f(x,D)]
st. x€{0,1}?
where
f(x,w) =min y
s.t.  yo+ 16y + 19y» + 23y3 + 28y, — 100R =0
2y1 +3y2 +4y3 +5ys — R < rn(w) — x1
6y1 +1y2 +3y3 +2ya — R < n(w) — x2
Yo €Z,y;€{0,...,5},i=1,...,4 R€Z4,
Q= {172}7[)1 =p2=05.
(n(1), (1)) = (10,4),(r1(2), n(2)) = (13, 8).

2K(x) = cTx + max D pu(@h) T (rf(w) = THw)x)
ot wea
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Stochastic Inte, Two-Stage Stochastic Pure Integer Programming

Best LP Approximation
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LI RTINS Two-Stage Stochastic Pure Integer Programming

Approximation at k =1
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R TR e el Two-Stage Stochastic Pure Integer Programming
Approximation at k = 2
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R TR e el Two-Stage Stochastic Pure Integer Programming
Approximation at k =3
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R TR e el Two-Stage Stochastic Pure Integer Programming
Approximation at k = 4
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R TR e el Two-Stage Stochastic Pure Integer Programming
Approximation at k =5
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Two-Stage Stochastic Pure Integer Programming

Approximation at k = 6
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LRVES EECRS fote BTl IS EET L Two-Stage Stochastic Pure Integer Programming

Deterministic Equivalent Comparison - SSLP Instances

Instances DEF Gomory

Time Gap Time Gap

SSLP_5.25.50 2.03 0.00 0.18 0.00
SSLP_5.25_100 1.72 0.00 0.22 0.00
SSLP_5.50_50 1.06 0.00 0.27 0.00
SSLP_5.50_100 3.56 0.00 0.48 0.00
SSLP_5.50-1000 212.64 0.00 2.88 0.00
SSLP_5.50.2000  1020.54  0.00 5.73 0.00
SSLP_10_50-50 801.49 0.01 109.2 0.02
SSLP_10_50-100 * 0.10 218.42  0.02
SSLP_10_50_500 * 0.38 740.38  0.03
SSLP_10.50-1000 * 3.56 1615.42 0.02
SSLP_10.50-2000 * 18.59 2729.61 0.02

* 3600 second time limit

Kiigiikyavuz (IPCO Summer School)

Stochastic Mixed-Integer Programming

May 17-18, 2021

47 / 133



LETYR S PR N BN Two-Stage Stochastic Pure Integer Programming

Alternative Implementations

e Single (n) vs. multi-optimality cuts (7., for each w)
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Alternative Implementations
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Rounds of cuts in second stage

o Lexicography allows other structural cuts if known

Can also implement more efficient cut generation that maintains fixed recourse and fixed
technology matrices
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Alternative Implementations

Single (n7) vs. multi-optimality cuts (7., for each w)

Rounds of cuts in second stage

o Lexicography allows other structural cuts if known

Can also implement more efficient cut generation that maintains fixed recourse and fixed
technology matrices

Partial branch-and-cut for binary second-stage variables
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Summary - First Stage Binary, Second Stage Integer

o First computationally amenable incorporation of Gomory cuts into L-shaped decomposition
algorithm
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Summary - First Stage Binary, Second Stage Integer

o First computationally amenable incorporation of Gomory cuts into L-shaped decomposition
algorithm

e In each iteration, solve at most two LP subproblems (not IP’s to completion)

o Cost function vector, recourse & technology matrices and RHS are allowed to be random

o All alternative implementations with lex-dual simplex are finite

e One can now integrate alternative classes of cuts: Disjunctive, Gomory, structural
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U S o Al et
First and Second Stages Integer [Zhang and K., 2014]

B=D=1{1,2},C=0
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U S o Al et
First and Second Stages Integer [Zhang and K., 2014]

B=D={1,2},C=0

o Second-stage problem is similar as before

e Use a more sophisticated lifting function relying on Gomory cuts for the first-stage

o Finitely convergent, thanks to finite convergence of Gomory for deterministic pure integer
programs

How about mixed-integer variables? Gomory (or Gomory Mixed-Integer) pure cutting plane
method is no longer finitely convergent...
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R Y R e A e el Two-Stage Stochastic Mixed-Integer Programming
Outline

@ Two-Stage Stochastic Integer Programming

o Two-Stage Stochastic Mixed-Integer Programming
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Two-Stage Stochastic Mixed-Integer Programming
Background: Deterministic 0-1 Mixed-Integer Linear Program (MILP)

mingex{cTx|X = {Ax > b,x € {0,1}™ x Ri_nl}}“

o Let X; be the LP relaxation of X.

o P=(j,X) = {x € X|x; <0},
PT(j,X) == {x € X|x; > 1},
o H;(X) == cleonv(P~(j, X) U P*(j, X)).

Theorem (Sequential convexification of 0-1 MILP [Balas, 1979])
cleonv(X) = Hoy (Hp —1(--- (H1(X1)) - -))- J

Other finite characterizations: RLT [Sherali and Adams, 1990, 1994], SDP [Lovéasz and Schrijver,
1991], ...
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Two-Stage Stochastic Mixed-Integer Programming
Background: Deterministic 0-1 Mixed-Integer Linear Program (MILP)

mingex{cTx|X = {Ax > b,x € {0,1}™ x Ri_nl}}“

o Let X; be the LP relaxation of X.
° Pi(j?)__() = {x E)__(‘XJ <0},
Pr(j, X) = {x € X|x > 1},
o H;(X) == cleonv(P~(j, X) U P*(j, X)).

Theorem (Sequential convexification of 0-1 MILP [Balas, 1979])
cleonv(X) = Hoy (Hp —1(--- (H1(X1)) - -))- J

Other finite characterizations: RLT [Sherali and Adams, 1990, 1994], SDP [Lovéasz and Schrijver,
1991], ...

[Carge and Tind, 1998] and [Sen and Higle, 2005] adapt this convexification scheme for two-stage
stochastic mixed-binary optimization.
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How about general MILP?

Example of [Owen and Mehrotra, 2001]

)

Y

X
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ISP PRSI S Nl Two-Stage Stochastic Mixed-Integer Programming

Convexification w.r.t xy
Example of [Owen and Mehrotra, 2001]

)
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CET NS PR N S Two-Stage Stochastic Mixed-Integer Programming

Convexification w.r.t first x, then x # conv(X)!
Example of [Owen and Mehrotra, 2001]

Y
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EI: B T EELIM NN ITIETN NIl Two-Stage Stochastic Mixed-Integer Programming

Convexification w.r.t first xq, then x», then x;
Example of [Owen and Mehrotra, 2001]
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R R A e el Two-Stage Stochastic Mixed-Integer Programming
Ad infinitum

Example of [Owen and Mehrotra, 2001]

)

Y

X
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EV-LRS LI ERAIM DI IO AET LA Two-Stage Stochastic Mixed-Integer Programming

General MILP with bounded integer variables

minxex{cTx|X = {Ax > b,x € Z'} x Rl"™}}.

e Assume that all integer variables are bounded: x; € [0, u;] for all j =1,..., ;.
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e Assume that all integer variables are bounded: x; € [0, u;] for all j =1,..., ;.
o One variable at a time convexification converges in the limit [Owen and Mehrotra, 2001]

e A disjunctive cutting plane algorithm using elementary disjunctions may not converge to the
integral optimal solution [Owen and Mehrotra, 2001].
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e A disjunctive cutting plane algorithm using elementary disjunctions may not converge to the
integral optimal solution [Owen and Mehrotra, 2001].

o Binary expansion of bounded integer variables may not be effective in practice [Owen and
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General MILP with bounded integer variables

minxex{cTx|X = {Ax > b,x € Z'} x Rl"™}}.

Assume that all integer variables are bounded: x; € [0, uj] for all j =1,..., ;.

One variable at a time convexification converges in the limit [Owen and Mehrotra, 2001]

e A disjunctive cutting plane algorithm using elementary disjunctions may not converge to the
integral optimal solution [Owen and Mehrotra, 2001].

o Binary expansion of bounded integer variables may not be effective in practice [Owen and
Mehrotra, 2002]

[Adams and Sherali, 2005] give a finite RLT characterization using Lagrange interpolation
polynomials
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age Stochastic Integer Program Two-Stage Stochastic Mixed-Integer Programming

Questions

o Is there a finite disjunctive characterization of the convex hull of MILP solutions in the
original space of general integer variables?

e Is there a finitely convergent cutting plane algorithm for a general MILP (with no
assumptions on the integrality of the optimal objective)?
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CET NS PR N S Two-Stage Stochastic Mixed-Integer Programming
General MILP

mingex{c x|X = {Ax > b,x € Z"* x R} ™}}.

e Assume that all integer variables are bounded: x; € [0, u;] for all j =1,...,n;.

e Let X; be the LP relaxation of X.

Kiigiikyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 56 / 133



age Stochastic Integer Program Two-Stage Stochastic Mixed-Integer Programming

General MILP

mingex{c x|X = {Ax > b,x € Z"* x R} ™}}.

e Assume that all integer variables are bounded: x; € [0, u;] for all j =1,...,n;.

e Let X; be the LP relaxation of X.
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RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming
General MILP

mingex{c x|X = {Ax > b,x € Z"* x R} ™}}.

e Assume that all integer variables are bounded: x; € [0, u;] for all j =1,...,n;.

e Let X; be the LP relaxation of X.

e Partition each interval [0, uj] into t; sub-intervals [¢1; := 0, uyj], [b2), uzj], - . -, [€gj, ugj == uj]

* Given a partition P, the collection of all ni-tuples k := (k1,...,Kn, ), Where x; € {1,...,t;}
for j=1,...,n1, is denoted by K(P).
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RRVES RS Lote BT DTS ET NNl Two-Stage Stochastic Mixed-Integer Programming
General MILP

mingex{c x|X = {Ax > b,x € Z"* x R} ™}}.

e Assume that all integer variables are bounded: x; € [0, u;] for all j =1,...,n;.

e Let X; be the LP relaxation of X.

e Partition each interval [0, uj] into t; sub-intervals [¢1; := 0, uyj], [b2), uzj], - . -, [€gj, ugj == uj]

* Given a partition P, the collection of all ni-tuples k := (k1,...,Kn, ), Where x; € {1,...,t;}
for j=1,...,n1, is denoted by K(P).

e A unit partition, P*, of all integer points is a partition for which Upjj — Enj-j < 1, for all
kj=1,...,tj,andall j=1,...,n.
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RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming

A Finite Disjunctive Characterization for General MILP
For a given vector k € K(P*), an index j, and a polyhedron X, let

P~ (k,j,X) == {x € X|l;i < x; < tp;iyi=1,...,m;x < Luits

Pt (k,j,X):={x € )_(Mmf <xi Sty i=1,...,n1% 2> u,w-}.

Also let Hf()_() := cleonv(P~ (k,j, X) U Pt(k,j, X)\ 0)
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A Finite Disjunctive Characterization for General MILP
For a given vector k € K(P*), an index j, and a polyhedron X, let

P~ (5,j, X) = {x € X|lu;i <xi < upyini=1,...,n15% < Luits

Pt (k,j,X):={x € )_<|Zm,-i <xi Sty i=1,...,n1% 2> Unj-j}~

Also let Hf()_() := cleonv(P~ (k,j, X) U Pt(k,j, X)\ 0)

Theorem (Sequential convexification of General MILP [Chen, K., and Sen, 2011])

Given a set X = {x € Z! x R ™|Ax > b}, X # 0, with bounded integer variables, for any unit
partition P*,

cleonv(X) = cleonv{Ue k(=) [Hh, (H7 -1 (- (HT(X0)) ---)) \ 0]}
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RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming

A Finite Disjunctive Characterization for General MILP
For a given vector k € K(P*), an index j, and a polyhedron X, let

P~ (k,j,X) == {x € X|l;i < x; < tp;iyi=1,...,m;x < Luits

Pt (k,j,X):={x € )_<|Zm,-i <xi Sty i=1,...,n1% 2> u,w-}.

Also let Hf()_() := cleonv(P~ (k,j, X) U Pt(k,j, X)\ 0)

Theorem (Sequential convexification of General MILP [Chen, K., and Sen, 2011])

Given a set X = {x € Z! x R ™|Ax > b}, X # 0, with bounded integer variables, for any unit
partition P*,

cleonv(X) = cleonv{Ue k(=) [Hh, (H7 -1 (- (HT(X0)) ---)) \ 0]}

Proof idea. The set K(P*) decomposes the problem into boxes of at most unit size, each of
which can be sequentially convexified.
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RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)

A unit partition P* is given by x; € {[0,1],[1,2],[2,3]} for j = 1,2, t; = 3 and &; € {1,2,3} for
j=1,2.

K(P*) ={(1,1),(1,2),(1,3),(2.1),(2,2),(2,3),(3,1),(3,2),(3,3)}.

o A Hél’l)(Hgl’l)(XL))
1,2 1,2
) HD (P (X))

2,1) 14,(2,1)

Hy(H (X))
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RRVES RS Lote BT DTS ET NNl Two-Stage Stochastic Mixed-Integer Programming

How can we make this practical?

Unit partition contains exponentially many pieces.

Overview of the Cutting plane tree (CPT) algorithm

Given a fractional point x, find and add a violated disjunctive cut, re-solve LP.

e Add one valid cut at a time from “box” disjunctions (Q:'s), using a cut generation LP
(CGLP)

e Obtain Q:'s on-the-fly using a cutting plane tree

e CPT provides the memory needed for finite convergence.
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SRS ER T NS G NIl Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)

Cutting plane tree algorithm

Q1 Q2

€2
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SRS ER T NS G NIl Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)

Cutting plane tree algorithm

@1 Q2

T2
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CET NS PR N S Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)

Cutting plane tree algorithm

T

Q2

Kiigiikyavuz (IPCO Summer School)
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RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)

Cutting plane tree algorithm

@1 Q2

)
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SRS ER T NS G NIl Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)
CPT algorithm

Iteration 1.

o Solve LP relaxation: x! = (15/8,1).

Kiigiikyavuz (IPCO Summer School)

Stochastic Mixed-Integer Programming

May 17-18, 2021

61/ 133



RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)
CPT algorithm

Iteration 1 (cont.)

e Create two branches in CPT: x; <1 and

x1 > 2
o Solve the CGLP based on the two 1 <1 \11 >2
disjunctions (nodes 2&3) to generate a
violated cut: @
11 o < 5
T ey < 2
T =0
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age Stochastic Integer Program Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)
CPT algorithm

Iteration 2.

e Solve LP relaxation: x? = (2,2/3). <1 \Ti >9
o Search the current CPT to find where x2

falls. (Node 3) @
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RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)
CPT algorithm

Iteration 2 (cont.)
o Create 2 branches for node 3: x; < 0 and

X2 > 1, remove infeasible nodes (crossed).

® Solve the CGLP based on the 2
disjunctions (nodes 2&4) to generate a
violated cut:

15

9
— < —
X1+19X2_4
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Example (cont.)
CPT algorithm

Iteration 3. T <1 \ml >2
e Solve LP relaxation: x3 = (1,19/12). @
o Search the current CPT to find where x3
falls. (Node 2) x9 <0
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RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)
CPT algorithm

Iteration 3 (cont.)

o Create 2 branches for node 2: x, <1 and
xp > 2.

e Solve the CGLP based on the 3
disjunctions (nodes 4,5&6) to generate a
violated cut:

15

9
— < —
X1+16X2_4

May 17-18, 2021 61 / 133
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Example (cont.)
CPT algorithm

Iteration 7.

o Solve LP relaxation: x” = (2,0).
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(S ZF-ORE PRI NS GTIEININ Sl Two-Stage Stochastic Mixed-Integer Programming

Finite convergence of CPT

Theorem ([Chen, K., and Sen, 2011])

For a general MILP with bounded integer variables, the cutting plane tree algorithm converges to
an optimal solution in finitely many iterations.
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RS ST I NI NV eIl Two-Stage Stochastic Mixed-Integer Programming

Finite convergence of CPT

Theorem ([Chen, K., and Sen, 2011])

For a general MILP with bounded integer variables, the cutting plane tree algorithm converges to
an optimal solution in finitely many iterations.

Proof sketch.
e The number of possible leaf nodes is finite. In the worst case, we reach a unit partition, P*.
o There are finitely many extreme points of the CGLP for clconv{Ug,ep+(Q: N Xm, )}
e A node o is visited finitely many times.
o The unique path from the root node to each leaf node defines a Kk € K(P*).

e Now use General MILP Sequential Convexification Theorem.
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Finite convergence of CPT

Theorem ([Chen, K., and Sen, 2011])

For a general MILP with bounded integer variables, the cutting plane tree algorithm converges to
an optimal solution in finitely many iterations.

Proof sketch.
e The number of possible leaf nodes is finite. In the worst case, we reach a unit partition, P*.
o There are finitely many extreme points of the CGLP for clconv{Ug,ep+(Q: N Xm, )}
e A node o is visited finitely many times.
o The unique path from the root node to each leaf node defines a Kk € K(P*).

e Now use General MILP Sequential Convexification Theorem.

[Chen, K., Sen, 2012] tests CPT algorithm on (deterministic) MIPLIB instances
[Qi and Sen, 2017, 2021+] leverage the CPT algorithm for two-stage stochastic MIPs
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RRVES RS Lote BT DTS ET NNl Two-Stage Stochastic Mixed-Integer Programming

Discussion

o Successful adaptation of Benders-type approaches require

e finite convexification in second stage,

o tractable lifting of first-stage variables
e Extended formulations in second stage, e.g., [Kim and Mehrotra, 2015], [Bansal et al., 2018]

o Convex approximations, e.g., [Romeijnders et al., 2016], [van der Laan and Romeijnders,
2020+]

o Multi-stage stochastic MIP: SDDiP (JuMP) [Zou et al., 2019]

o Progressive hedging (Py-SP), e.g., [Rockafellar and Wets, 2004], [Watson et al., 2012],
[Gade et al., 2016]

e Two-stage stochastic mixed-integer nonlinear programs, e.g., [Mehrotra and Ozevin, 2009],
[Li and Grossmann, 2018, 2019]
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Chance-Constrained Programming
Outline

© Chance-Constrained Programming
o Static Joint Chance-Constrained Programming
o Two-stage (Dynamic) Chance-Constrained Programming
o Distributionally Robust Chance-Constrained Programming
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Chance-Constrained Programming

Risk-Averse Optimization

Modeling risk/reliability/quality-of-service restrictions

o Rare events with dire consequences

® Not every realization of uncertain data may lead to a feasible solution

o Using risk-neutral models (expectations) do not capture the risk involved with low probability
events

e There exist multiple correlated risk criteria

e Supply chain disruptions, natural disasters, pandemic, etc.
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Risk Models and Challenges

e Quantitative risk models

¢ Models with (multivariate) conditional-value-at-risk (CVaR)

e Stochastic multi-objective optimization: Efficient frontier stochastic

e Qualitative risk models

e Models with joint chance-constraints

o Feasible region highly non-convex

o A large number of samples (scenarios) needed to represent uncertainty
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Preliminaries: Value-at-Risk (VaR)

Definition

For a univariate random variable X, with cumulative distribution function Fx, the value-at-risk
(VaR) at confidence level (1 — €), also known as (1 — €)-quantile, is given by:

VaRi_¢(X) = min{n : Fx(n) >1—¢}. (1)

e From (1), for any x € R, the inequalities VaRi_(X) < 7 and P(X < 7) > 1 — € are
equivalent.

o In optimization context, the r.v. X is dependent on the decision vector x and uncertain
parameters w

e In this context, a chance constraint on random variable X can be equivalently represented as
a constraint on its VaR.

o Here, larger values of X are considered risky (e.g., losses).
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Preliminaries: Conditional Value-at-Risk (CVaR)

Definition ([Rockafellar and Uryasev, 2000,2002])

The conditional value-at-risk (CVaR) at confidence level (1 — ¢) € (0, 1] is given by
1
CVaRi_¢(X) = min {77+E]E([X—77]+) : WER}, (2)

where (a)4 := max{0, a}.

F(v)
= T
| i
1-«a o I S I !
| |
p—
— b e > I I
_ vfu : f\'ﬁ Ry (V) v —q I I
VaR.(V) v
= a-quantile

Here a =1 —e.
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Chance-Constrained Programming

Preliminaries: Alternative Representations of CVaR

e Suppose X is a r.v. with realizations Xi, ..., Xy and probabilities p1, ..., py-
o The optimization problem in (2) can equivalently be formulated as the linear program (LP):

1

min 77+7E piw; : w; > X;i—n, Vié€l[N], WERQ’ . 3)
€
i€[N]

o Let p denote an ordering of the realizations such that X,; < X,, <.-- < X,,. Then, for a
given confidence level € € (0, 1] we have

VaRi—¢(X) = Xp,, where g = min ¢ j € [N] : prf >1—€p. (4)
i€lj]

e CVaR provides a tractable approximation to an individual VaR constraint. (Replace
VaRi_¢(X) < 7 with CVaR;_(X) < 71.)

e How about the multivariate case? [Prékopa, 1990], [K. and Noyan, 2016], [Merakli and K.,
2018]
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming
Outline

© Chance-Constrained Programming
o Static Joint Chance-Constrained Programming
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(@ ENISHEG OIS NCEET LA  Static Joint Chance-Constrained Programming

Static Joint chance-constrained program (CCP)

o A linear joint chance-constrained program (CCP) with right-hand-side uncertainty is an
optimization problem of the following form:

min {ch : P[Ax > b(w)] > 1—¢, x € X} (CccP)

where
e (Q,F,P) is a probability space,
e X is a (polyhedral) domain,
e ¢ €(0,1) is a risk level, and

e b(w) is the random right-hand-side vector that depends on the random variable w € Q.

o Dates back to [Charnes et al., 1958], [Charnes and Cooper, 1959, 1963] (individual chance
constraints), and [Miller and Wagner, 1965], [Prékopa,1973] (joint chance constraints)

e Why can’t we handle P[f(x,£) > 0] > 1 — e directly?

¢ Non-convex unless certain restrictive assumptions, e.g., [Prékopa, 1990], [Sen, 1992], [Dentcheva et
al., 2000]

e Evaluating P[f(x, &) > 0] is difficult (multidimensional integration).

e In practice, IP is often unknown. (We'll address this later.)
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Static Joint chance-constrained program (CCP)

o A linear joint chance-constrained program (CCP) with right-hand-side uncertainty is an
optimization problem of the following form:

min {ch : P[Ax > b(w)] > 1—¢, x € X} (CccP)

where
e (Q,F,P) is a probability space,
e X is a (polyhedral) domain,
e ¢ €(0,1) is a risk level, and

e b(w) is the random right-hand-side vector that depends on the random variable w € Q.

o Dates back to [Charnes et al., 1958], [Charnes and Cooper, 1959, 1963] (individual chance
constraints), and [Miller and Wagner, 1965], [Prékopa,1973] (joint chance constraints)

e Used in modeling problems with “random supplies/demands”.

e Why can’t we handle P[f(x,£) > 0] > 1 — e directly?

¢ Non-convex unless certain restrictive assumptions, e.g., [Prékopa, 1990], [Sen, 1992], [Dentcheva et
al., 2000]

e Evaluating P[f(x, &) > 0] is difficult (multidimensional integration).

e In practice, IP is often unknown. (We'll address this later.)
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Non-convex feasible region example adapted from [Sen, 1992]

min X1 + X2

2x1 —x2 2> w1
s.t. IP’{ X429 > w2} > 0.6

x >0,
with joint probability density function of w
Scenario | 1 2 3 4 5 6 7 8 9
w1 0.75 05 0.5 025 025 0.25 0 0 0
w2 125 15 125 175 15 1.25 2 1.5 125
Probability | 0.2 0.14 0.06 0.06 0.06 03 0.04 004 0.1

wy =2
wy =15
wy = 1.25
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Finite sample space assumption

o We consider the setting where Q is a finite sample space:

Q={wt, ..., "}
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Finite sample space assumption

o We consider the setting where Q is a finite sample space:
Q={wt, ..., "}
e Even if Q is not finite, we can approximate (CCP) via an empirical distribution (see the

theory of Sample Average Approximation (SAA), e.g., [Luedtke and Ahmed, 2008], [Calafiore
and Campi, 2005, 2006]).
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Finite sample space assumption

o We consider the setting where Q is a finite sample space:
Q={wt, ..., "}
e Even if Q is not finite, we can approximate (CCP) via an empirical distribution (see the

theory of Sample Average Approximation (SAA), e.g., [Luedtke and Ahmed, 2008], [Calafiore
and Campi, 2005, 2006]).

o Assuming that P [w = w'] = p; for i € [N],
O
min {c x: P[Ax > b(w)] > 1 —e, xex} (ccp)

can be rewritten as

min{ ¢ x: Z pil [AX > b(wi)] >1l—-¢, x€eX
i€[N]

e Also known as (ML) empirical risk, (stats) Monte Carlo.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Reformulation

e There is a deterministic reformulation: the problem can be reformulated as the following
mixed-integer program [Ruszczyriski, 2001],

min ¢ x

st. Ax =y,
y > b(w)(1—2z), Vie[N],
dop(l—z)>1—¢
i€[N]
x€X, yeRE, ze€{0,1}",
where

e we assume that Ax > 0 holds for all x € X,
o b(w') >0 forall i, i.e., Ax > 0 is satisfied for all x € X,

e 1l—z~1 [Ax > b(w’)]:

Ax > b(w')ifz=0 and Ax >0ifz = 1.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Big-M Reformulation

The problem can be reformulated as the following mixed-integer program:

min ¢’ x

st. Ax =y,
yj = wij(1—z), Vié€[N],Vj€E k],

> pizi <e
i€[N]

x€X, yeRE, z€{0,1}",

where W = {W,‘j} S R{XXI( is a nonnegative matrix.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming
Difficulties

e The MIP formulation is often difficult to solve.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming
Difficulties

e The MIP formulation is often difficult to solve.

e In fact, its LP relaxation is weak:

min ¢’ x

st. Ax =y,
yj > wii(l—2z), Viel[N],V)e k],

D> pizi<e

i€[N]
xeX,yeRk, ze[o, 1]V
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming
Difficulties

e The MIP formulation is often difficult to solve.

e In fact, its LP relaxation is weak:

min ¢’ x

st. Ax =y,
yj > wii(l—2z), Viel[N],V)e k],

D> pizi<e

i€[N]
xeX,yeRk, ze[o, 1]V

o We will strengthen the formulation by integer programming techniques.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Known substructures

o We refer to the set
{(r2) € RE x {0, 13V 3y > wy(1 - ), Vi € [N],Y) € [k} (Mix)

as a (joint) mixing set (term coined by [Giinliik and Pochet, 2001] for related set with
general integer variables).
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Known substructures

o We refer to the set
{(r2) € RE x {0, 13V 3y > wy(1 - ), Vi € [N],Y) € [k} (Mix)

as a (joint) mixing set (term coined by [Giinliik and Pochet, 2001] for related set with
general integer variables).

¢ One can obtain the convex hull of (Mix) by adding the so-called mixing (or star) inequalities
[Atamtiirk, Nemhauser, Savelsbergh, 2000].
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Known substructures

o We refer to the set
{( 2) €RK x {0,1}V ¢ y; > wy(1—z), Vi € [N],Vj € [k]} (Mix)

as a (joint) mixing set (term coined by [Giinliik and Pochet, 2001] for related set with
general integer variables).

¢ One can obtain the convex hull of (Mix) by adding the so-called mixing (or star) inequalities
[Atamtiirk, Nemhauser, Savelsbergh, 2000].

o We call the set

(v, 2) € (Mix) : Z pizi < e (Mix-knapsack)
i€[N]

as a (joint) mixing set with a knapsack constraint.
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(@ ENISHEG OIS NCEET LA  Static Joint Chance-Constrained Programming

Known substructures

o We refer to the set
{( 2) €RK x {0,1}V ¢ y; > wy(1—z), Vi € [N],Vj € [k]} (Mix)

as a (joint) mixing set (term coined by [Giinliik and Pochet, 2001] for related set with
general integer variables).

¢ One can obtain the convex hull of (Mix) by adding the so-called mixing (or star) inequalities
[Atamtiirk, Nemhauser, Savelsbergh, 2000].

e We call the set
(v, 2) € (Mix) : Z pizi < e (Mix-knapsack)
i€[N]
as a (joint) mixing set with a knapsack constraint.

o Valid inequalities for (Mix-knapsack) are given in [Luedtke, Ahmed, Nemhauser, 2010], [K.,
2012], [Abdi and Fukasawa, 2016], [Zhao, Huang, Zeng, 2017].
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(@ ENISHEG OIS NCEET LA  Static Joint Chance-Constrained Programming

Known substructures

o We refer to the set
{( 2) €RK x {0,1}V ¢ y; > wy(1—z), Vi € [N],Vj € [k]} (Mix)

as a (joint) mixing set (term coined by [Giinliik and Pochet, 2001] for related set with
general integer variables).

¢ One can obtain the convex hull of (Mix) by adding the so-called mixing (or star) inequalities
[Atamtiirk, Nemhauser, Savelsbergh, 2000].

e We call the set
(v, 2) € (Mix) : Z pizi < e (Mix-knapsack)
i€[N]
as a (joint) mixing set with a knapsack constraint.

o Valid inequalities for (Mix-knapsack) are given in [Luedtke, Ahmed, Nemhauser, 2010], [K.,
2012], [Abdi and Fukasawa, 2016], [Zhao, Huang, Zeng, 2017].

e Random technology matrix and right-hand-side extensions [Tanner and Ntaimo, 2010],
[Luedtke, 2014]
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Known substructures

o We refer to the set
{( 2) €RK x {0,1}V ¢ y; > wy(1—z), Vi € [N],Vj € [k]} (Mix)

as a (joint) mixing set (term coined by [Giinliik and Pochet, 2001] for related set with
general integer variables).

¢ One can obtain the convex hull of (Mix) by adding the so-called mixing (or star) inequalities
[Atamtiirk, Nemhauser, Savelsbergh, 2000].

e We call the set
(v, 2) € (Mix) : Z pizi < e (Mix-knapsack)
i€[N]
as a (joint) mixing set with a knapsack constraint.

o Valid inequalities for (Mix-knapsack) are given in [Luedtke, Ahmed, Nemhauser, 2010], [K.,
2012], [Abdi and Fukasawa, 2016], [Zhao, Huang, Zeng, 2017].

e Random technology matrix and right-hand-side extensions [Tanner and Ntaimo, 2010],
[Luedtke, 2014]

e It is harder to convexify (Mix-knapsack) due to the knapsack structure.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Binary mixing (star) inequalities

e The basic mixing set for given j € [k]:

{(yj,z) €ER x {0,1}N Ly 2> wi(l—2z), Vi€ [N]}
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Static Joint Chance-Constrained Programming
Binary mixing (star) inequalities
e The basic mixing set for given j € [k]:
{(yj,z) eR x {0,1}V: yj > w(1—2z), Vie [N]}
e The mixing inequality for a given subset M; = {j1,...,j-} with wj;; > .- > w; j is:

Vit > (Wi = Wi1j)Z, > W)
selrl

where w;_ ;= 0.
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Binary mixing (star) inequalities

e The basic mixing set for given j € [k]:

{(yj,z) €ER x {0,1}N Ly 2> wi(l—2z), Vi€ [N]}

e The mixing inequality for a given subset M; = {j1,...,j-} with wj;; > .- > w; j is:

Vit > (Wi = Wi1j)Z, > W)
selrl

where w;_ ;= 0.

e For example, the convex hull of

y1>8(1—z)
(y1,2) € Ry x {0,1F : y1 >6(1 — 2z)
y1 >13(1 — z3)

y1>13—62 — 7z

y1 > 13— 13z

yi 2 13 — 821 — 523

y1 > 13 -2z — 62y — 5z3

(v1,2) € Ry x [0,1]°

= {(yl,z) € Ry x [0, 1]3 : the mixing inequalities for yl}.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

How about the knapsack constraint?

o Typically, p; = % due to i.i.d. sampling
o In this case, the knapsack constraint is a cardinality constraint:
Z zi < |Ne] =: q
i€[N]
e Suppose wyj > --- > wyj, then we must have
Yj 2 Wg+1)j
e Use this to strengthen the formulation as
(v, 2) ERx {0, 1} : yj + (wy — wgy1y))z > wy, Vi € [q], Z zi<q
i€[N]
o Apply mixing inequalities to the strengthened formulation [Luedtke et al., 2010].
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Quantile cuts

o We can exploit the knapsack structure “indirectly” by the quantile cuts [Luedtke, 2014], [Xie
and Ahmed, 2018].
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Quantile cuts

o We can exploit the knapsack structure “indirectly” by the quantile cuts [Luedtke, 2014], [Xie
and Ahmed, 2018].

e A quantile cut is of the following form: for some h € Rk,

hTy > min {hTy s (y,2) € (Mix—knapsack)} .
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Quantile cuts

o We can exploit the knapsack structure “indirectly” by the quantile cuts [Luedtke, 2014], [Xie
and Ahmed, 2018].

e A quantile cut is of the following form: for some h € Rk,

hTy > min {hTy s (y,2) € (Mix—knapsack)} .

* Quantile cuts are valid for (Mix-knapsack), and thus, for the formulation.
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Quantile cuts

o We can exploit the knapsack structure “indirectly” by the quantile cuts [Luedtke, 2014], [Xie
and Ahmed, 2018].

e A quantile cut is of the following form: for some h € Rk,
hTy > min {hTy s (y,2) € (Mix—knapsack)} .
* Quantile cuts are valid for (Mix-knapsack), and thus, for the formulation.

o We replace/relax the knapsack constraint by the quantile cut

it tw=>e
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Mixing set with lower bounds

o Consider the set

yj > wii(1 — z), Vi € [N],Vj € [K],
(v,2): vi+-+y>e
y ER{L ze {Ovl}N

referred to as a (joint) mixing set with lower bounds.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Mixing set with lower bounds

o Consider the set

yj > wii(1 — z), Vi € [N],Vj € [K],
v,2): it tywze, (Mix-Ib)
y ER{L ze {Ovl}N

referred to as a (joint) mixing set with lower bounds.

e Our goal is to understand the polyhedral structure of (Mix-lb) to generate strong valid
inequalities.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Example 1

e The convex hull of

y12>8(1—2z1) y2 > 3(1—z1)
(v,2) eR2 x{0,1}® : y1>6(1—2) , y2>4(1-2)
1>13(1—-2z) y2>2(1—2z)

is
y1 213 -6z — 7z Y224 —2z1—2— 2z
5 3 y1 > 13 —13z; Yo >4 -2z —22z3
(’V7Z)€R+X[O71] y1213—821—523 ) y224—321—22

y1>13—-221—62 —5z3 yy>4—4z

={(y,2) € Ri % [0,1]3 : the mixing inequalities for Yi,y2}-

o This was shown by [Atamtiirk, Nemhauser, Savelsbergh '00].
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Example 1

e The convex hull of
y1>8(1—z) y2 > 3(1—z1)

(v,2) eR2 x{0,1}® : y1>6(1—2) , y2>4(1-2)
y1213(1—-2z) y2>2(1—-2z)

is
y1 213 -6z — 7z Y224 —2z1—2— 2z
5 3 y1 > 13 —13z; Yo >4 -2z —22z3
(’V7Z)€R+X[O71] y1213—821—523 ) y224—321—22

y1>13—-221—62 —5z3 yy>4—4z

={(y,2) € Ri % [0,1]3 : the mixing inequalities for Y1, Y2}
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Example 1

e The convex hull of

y12>8(1—2z1) y2 > 3(1—z1)
(v,2) eR2 x{0,1}® : y1>6(1—2) , y2>4(1-2)
1>13(1—-2z) y2>2(1—2z)

is
y1 213 -6z — 7z Y224 —2z1—2— 2z
5 3 y1 > 13 —13z; Yo >4 -2z —22z3
(’V7Z)€R+X[O71] y1213—821—523 ) y224—321—22

y1>13—-221—62 —5z3 yy>4—4z

={(y,2) € Ri % [0,1]3 : the mixing inequalities for Y1, Y2}

o This was shown by [Atamtiirk, Nemhauser, Savelsbergh '00].
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming
Example 2

The convex hull of

y1>8(1—2z1) y2 > 3(1—z1)
y12>6(1—2) y2 > 41— z)
yi>213(1—-2z3) , y222(1-=z) , y1+y2>7
y1>(1—z) y2 > 2(1 - z)
y1 > 41— z) y2 > (1 —z)

(v,2) €
R2 x {0,1}3
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Example 2
The convex hull of

(v,2) €
R2 x {0,1}3

(v,2) €
R2 x [0,1]®

:{ (v,2) €
R2 x [0,1]®

y1>8(1—2z1) y2 > 3(1—z1)
y12>6(1—2) y2 > 41— z)
yi>213(1—-2z3) , y222(1-=z) , y1+y2>7
y1>(1—z) y2 > 2(1 - z)
y1 > 41— z) y2 > (1 —z)

the mixing inequalities for y1, y»
Vi+y2217—2z — 2 —8z
yi+y2 217 -2z — 8z
Yi+y22>217—-32, -7z
y1i+y2 217 -2z — 3z, — 523
vi+y,>17—4z — z — 5z3

the mixing inequalities for yi, y»
the “aggregated” mixing inequalities for “y; + y»"
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Example 2
The convex hull of

(v,2) €
R2 x {0,1}3

(v,2) €
R2 x [0,1]®

.

(v,2) €
R2 x [0,1]®

y1>8(1—2z1) y2 > 3(1—z1)
y12>6(1—2) y2 > 41— z)
yi>213(1—-2z3) , y222(1-=z) , y1+y2>7
y1>(1—z) y2 > 2(1 - z)
y1 > 41— z) y2 > (1 —z)

the mixing inequalities for y1, y»
Vi+y2217—2z — 2 —8z
yi+y2 217 -2z — 8z
Yi+y22>217—-32, -7z
y1i+y2 217 -2z — 3z, — 523
vi+y,>17—4z — z — 5z3

the mixing inequalities for yi, y»
the “aggregated” mixing inequalities for “y; + y»"

Are the mixing and the aggregated mixing inequalities enough to describe the convex hull of

(Mix-Ib)?
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming
Example 3

e The convex hull of

n>81l-z1) y223(1-2z)
y12>6(1—2) y2 > 41— 2)

z) €
(v, 2) D oy >131—z3) , y»>2(1—2z3) , yi+y2>9

R2 x {0,1}3
A D e

y1 > 41— z5) y2 > (1 —z)
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming
Example 3

e The convex hull of

y1>8(1—z1) yo > 3(1—z1)
(v,2) € n126(l—2) y2>41-2)
RZ X{O 1}3 : y1 213(1_23) ) Y222(1_Z3) ’ y1+)/2 29
+ ’ y12>(1—2z) y2 > 2(1— z)
y1 > 41— z5) y2 > (1 —z)

the mixing inequalities for yi, y»
the aggregated mixing inequalities for y1 + y»
7y1 + 6ys > 115 — 12z, — 49z3
(v,2) € . 6y1 +5y2 > 98— 10z — 4223 — z4
R2 x [0,13 * 3y1 42y > 47 — 4z —2lz3 — z — 3z
3y1 +2y0 > 47 — 4zy — 2173 — 4z5
2y1 4+ 3y2 > 38 — 620 — 1423
yi+2y2 221 -4z, —7z3 — 75
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming
Example 4

e The convex hull of

y1>8(1—z1) y2 > 3(1—z1)
nN=6(l-2) y>41l-2)

s (S
(v, 2) Do >2131-z) , »p>2(1-) , 1+ >7

R2 x {0,1}3
)AL T Y S0z >3- 2)

y1 > 41— z) y2 > (1 —z)
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Example 4

e The convex hull of

(v,2) €
R2 x {0,1}3

(v,2) €
R2 x [0,1]3

Kiigiikyavuz (IPCO Summer School)

v1>8(1—z1) y2>3(1—z1)
126(l—2z)  y2>41-2)
1>131-z), »>221-=z) , n+y2>7
y1 > (1—z) y2 > 3(1 — z3)

1> 41— z) y2 > (11— z)

the mixing inequalities for y1, y»

the aggregated mixing inequalities for y1 + y»
2y +3y2 > 38 —32, — 1823 — 3z
2y1+y2>230—2z —21z3 — 2z

2y1+y2 > 30— 2 — 1823 — z4 — 3z
yi+2y2 >21 -2z — 923 — 224 — z5
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets

e When are the mixing and the aggregated mixing inequalities sufficient?
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Submodularity in joint mixing sets

e When are the mixing and the aggregated mixing inequalities sufficient?

o We discover an underlying submodularity in (Mix-Ib)!
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets

e When are the mixing and the aggregated mixing inequalities sufficient?
o We discover an underlying submodularity in (Mix-Ib)!

e A function f € {0,1}" — R is submodular if
f(A)+ f(B) > f(ANB) + f(AUB) VA,B C [N].
o Alternatively, a function f € {0,1}Y — R is submodular if

FIXU{i}) — F(X) > F(YU{i}) - F(Y) VXCYCIN]igY.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets

o (Mix) can be written as

{02y ma (w0 -2}, i e 41}
={n2): % =61 -2), vj € [k}

where

fi(z) = max {wjz} for z € {0,1}".
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets

o (Mix) can be written as

{02y ma (w0 -2}, i e 41}
= (.27 3251~ 2), Y€ )
where

fi(z) = m[ax {wjz} for z € {0,1}".
i€[N

Remark

Each f; is a submodular function:

max{wu}+max{wu} > max {W,J}+ énA?WXB{WU}

for any A, B C [N].
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity and polymatroid inequalities

e Given a submodular (set) function f : 2[Nl — R, the extended polymatroid of f is

EP; = {m € R": =(V) < f(V), YV C [N]}.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity and polymatroid inequalities

e Given a submodular (set) function f : 2[Nl — R, the extended polymatroid of f is
EP;:={r € R": (V)< f(V), YV C[N]}.

e Given a submodular function f : {0,1}¥ — R, consider

Qr := {(y,z) eRx{0,1}V: y> f(l—z)}
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity and polymatroid inequalities

e Given a submodular (set) function f : 2[Nl — R, the extended polymatroid of f is
EP;:={r € R": (V)< f(V), YV C[N]}.

e Given a submodular function f : {0,1}¥ — R, consider

Qr := {(y,z) eRx{0,1}V: y> f(l—z)}

Theorem [Lovdsz, 1983, Atamtiirk and Narayanan 2008]
The convex hull of Qf is given by

{(}/,Z) eRx [071]N LYy > 71'T(lfz)4>f(w)7 v € E'Df—f(@)}'

Theorem [Edmonds, 1970]

Let f:{0,1}" — R be a submodular function. Then = € R" is an extreme point of EPs if and
only if there exists a permutation o of [N] such that 7, () = f(V:) — f(Vi—1), where
Vi = {o(1),...,0(t)} for t € [N] and V = 0.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity and polymatroid inequalities

e Given a submodular (set) function f : 2[Nl — R, the extended polymatroid of f is
EP;:={r € R": (V)< f(V), YV C[N]}.

e Given a submodular function f : {0,1}¥ — R, consider

Qr := {(y,z) eRx{0,1}V: y> f(l—z)}

Theorem [Lovdsz, 1983, Atamtiirk and Narayanan 2008]
The convex hull of Qf is given by

{(}/,Z) eRx [071]N LYy > 71'T(lfz)4>f(w)7 v € E'Df—f(@)}'

Theorem [Edmonds, 1970]

Let f:{0,1}" — R be a submodular function. Then = € R" is an extreme point of EPs if and
only if there exists a permutation o of [N] such that 7, () = f(V:) — f(Vi—1), where
Vi = {o(1),...,0(t)} for t € [N] and V = 0.

e The inequalities y > 7" (1 — z) + () for 7 € EP¢_¢(p) are referred to as the polymatroid
inequalities of f.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity and polymatroid inequalities

e Given a submodular (set) function f : 2[Nl — R, the extended polymatroid of f is
EP;:={r € R": (V)< f(V), YV C[N]}.

e Given a submodular function f : {0,1}¥ — R, consider

Qr := {(y,z) eRx{0,1}V: y> f(l—z)}

Theorem [Lovdsz, 1983, Atamtiirk and Narayanan 2008]
The convex hull of Qf is given by

{(.yzz) eRx [071]N LYy > 71'T(lfz)4>f(w)7 v € E'Df—f(@)}'

Theorem [Edmonds, 1970]

Let f:{0,1}" — R be a submodular function. Then = € R" is an extreme point of EPs if and
only if there exists a permutation o of [N] such that 7, () = f(V:) — f(Vi—1), where
Vi = {o(1),...,0(t)} for t € [N] and V = 0.

e The inequalities y > 7" (1 — z) + () for 7 € EP¢_¢(p) are referred to as the polymatroid
inequalities of f.

o Separating the polymatroid inequalities can be done in O(N log N) time.
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Static Joint Chance Constrined Programming
Example 1 (revisited)

e The convex hull of

y1>8(1—z1)
(v1,2) €Ry x {0,1}3 : y1 >6(1— ) ,
y1 > 13(1 — z3)

y1>13—62 — 7z

y1 > 13 —-13z3

y1 > 13 -8z —5z3 ’
y1 > 13 -2z — 620 — 5z3

(n1,2) e Ry x 0,13

= {(yl,z) € Ry x [0, 1]3 : the mixing inequalities for yl}.

e Consider o = {2,3,1}.



Static Joint Chance Constrined Programming
Example 1 (revisited)

e The convex hull of

y1>8(1—z1)
(v1,2) €Ry x {0,1}3 : y1 >6(1— ) ;
y1 > 13(1 — z3)

y1>13—62 — 7z

y1 > 13 —-13z3
y121378217523 ’
y1 > 13 -2z — 620 — 5z3

(n1,2) e Ry x 0,13

= {(yl,z) € Ry x [0, 1]3 : the mixing inequalities for yl}.

e Consider o = {2,3,1}.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Joint mixing sets and mixing inequalities

o Recall the basic mixing set:
{2y eRx{O1}": > fi(1-2), Vj e [k}

where

fi(z) = I_rg[a,\ﬁ {wjz} forz € {0,1}V.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Joint mixing sets and mixing inequalities

o Recall the basic mixing set:
{2y eRx{O1}": > fi(1-2), Vj e [k}

where

fi(z) = I_rg[a,\ﬁ {wjz} forz € {0,1}V.

e The mixing inequality from a subset M; = {j1,--- ,jr} with wj; > --- > w; ; is:

Vit > (Wi — Wi 1))z > W)
se(7]

where wj 4= 0.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Joint mixing sets and mixing inequalities

o Recall the basic mixing set:

{2y eRx{O1}": > fi(1-2), Vj e [k}

where
fi(z) = max {w;z} for z € {0,1}V.
i€[N]
e The mixing inequality from a subset M; = {j1,--- ,jr} with wj; > --- > w; ; is:

Vit > (Wi — Wi 1))z > W)
se(7]

where wj 4= 0.

Theorem [Kiling-Karzan, Kiigiikyavuz, Lee, 2019+]

The polymatroid inequalities of f; of the form
. T .
yjzm (1—2z)+f(0) for m € EP_£(9)

are mixing inequalities.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Multiple submodular constraints

Theorem [Baumann et al., 2013]

Given submodular functions fi,. .., fi : {0,1}¥ — R, the convex hull of
{2 eR {0, 11V y; > f(1—2), V) € K]}

is given by
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Multiple submodular constraints

Theorem [Baumann et al., 2013]

Given submodular functions fi,. .., fi : {0,1}¥ — R, the convex hull of
{2 eR {0, 11V y; > f(1—2), V) € K]}

is given by

{(r2) eRE X [O,1N 1y > 77 (1= 2) + £(0), ¥ € EP;_qq),Y) € K]} -
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Multiple submodular constraints

Theorem [Baumann et al., 2013]

Given submodular functions fi,. .., fi : {0,1}¥ — R, the convex hull of
{2 eR {0, 11V y; > f(1—2), V) € K]}
is given by

{(y,z) ER X [0,1]V: y; > 7T (1-2) +£(0), Y € EPg_r(q), Vi € [k]}.

y
Theorem [Kiling-Karzan, K., Lee, 2019+]
Let fi,...,f; : {0,1}N — R be submodular. If hy, ..., h, € R¥ are weakly independent, then
{2y eRE x {0, 13" 0y > f(1-2), vjeld}
is given by
y
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Multiple submodular constraints

Theorem [Baumann et al., 2013]

Given submodular functions fi,. .., fi : {0,1}¥ — R, the convex hull of
{2 eR {0, 11V y; > f(1—2), V) € K]}
is given by

{(y,z) ER X [0,1]V: y; > 7T (1-2) +£(0), Y € EPg_r(q), Vi € [k]}.

y

Theorem [Kiling-Karzan, K., Lee, 2019+]

Let fi,...,f; : {0,1}N — R be submodular. If hy, ..., h, € R¥ are weakly independent, then

{2y eRE x {0, 13" 0y > f(1-2), vjeld}
is given by
{(y,z) ERFX [0, : hly >nT(1—2)+ (D), Vr € EP;_g ),V € [e]} .
y
Stochastic Mixed-Integer Programming May 17-18, 2021 91 / 133



[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

¢ Now consider (Mix-Ib):

{y;z2) € Mix): y1+---+yk > €}.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

¢ Now consider (Mix-Ib):

{y;z2) € Mix): y1+---+yk > €}.

e Then (Mix-Ib) can be written as
{(r.2): yy2f(1—2), Viekl, n+ - +y=gl-2)}

where

fi(z) = ine1[al\)l(] {wijzi}, g(z) =max{e, jez[k] fi(z) for z € {0,1}".
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

¢ Now consider (Mix-Ib):

{y;z2) € Mix): y1+---+yk > €}.

e Then (Mix-Ib) can be written as
{(r.2): yy2f(1—2), Viekl, n+ - +y=gl-2)}

where

fi(z) = m[al\)l(] {wijzi}, g(z) =max{e, Z fi(z) for z € {0, 1}".

' €I

e In contrast to f}, the function g is not always submodular.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

¢ Now consider (Mix-Ib):

{y;z2) € Mix): y1+---+yk > €}.

e Then (Mix-Ib) can be written as
{(r.2): yy2f(1—2), Viekl, n+ - +y=gl-2)}

where

fi(z) = m[al\)l(] {wijzi}, g(z) =max{e, Z fi(z) for z € {0, 1}".

' €I

e In contrast to f}, the function g is not always submodular.

e Can we characterize when g is submodular?
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

o Let I(e) C [N] be a collection of scenarios defined as follows:

I(e):=<i€[N]: ZWUSE

JE[K]
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

o Let I(e) C [N] be a collection of scenarios defined as follows:

I(e):=4ic[N]: ZW,‘J‘SE

JE[K]

o I(g) collects a set of scenarios with small coefficients.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

o Let I(e) C [N] be a collection of scenarios defined as follows:

I(e):=4ic[N]: ZW,‘J‘SE

JE[K]

o I(g) collects a set of scenarios with small coefficients.

e In Example 1, I(e) = {4,5}.

v1>8(1—z1) y2 > 3(1—z1)
(y,2) € 126(l—2) y2>41-2)
R2 X{O 1}3 : y1 213(1723) ) y222(1723) , Y1+ y2 27
* ’ yi > (1—z) y2 2 2(1—z)
1> 41— z) y2 > (1 — z5)
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

o We say that I(¢) is e-negligible if I(¢) = 0
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Submodularity in joint mixing sets with lower bounds

o We say that I(¢) is e-negligible if I(€) = @ or I(g) # ( and
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

o We say that I(e) is e-negligible if I(¢) = 0 or I(c) # 0 and I(¢) satisfies
(1) > max {w;} <e,

jE i€l

(2) mlax {WU} < wj for every i € [N]\ I() and j € [K].
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Submodularity in joint mixing sets with lower bounds

o We say that I(e) is e-negligible if I(¢) = 0 or I(c) # 0 and I(¢) satisfies
(1) > max {w;} <e,

jE i€l

(2) mlax {WU} < wj for every i € [N]\ I() and j € [K].

Theorem [Kiling-Karzan, K., Lee, 2019+]

g is submodular if and only if ¢ satisfies
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets with lower bounds

o We say that I(e) is e-negligible if I(¢) = 0 or I(c) # 0 and I(¢) satisfies

(1) > max {w;} <e,

jE i€l

(2) mlax {WU} < wj for every i € [N]\ I() and j € [K].

Theorem [Kiling-Karzan, K., Lee, 2019+]

g is submodular if and only if ¢ satisfies

I(€) is e-negligible,

min _ >° min{wpj, wgi} if I(e) # [N]
2. e < Lw(e) = | pacIN\T(e) {je[k] wr e } ’ .
+oo, if 1(e) = [N]
v
e Now we know when (Mix-Ib) has a submodularity structure.
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Aggregated mixing inequalities

o (Mix-Ib) can be written as

{v,;2): vy >26(1—2), Vielkl, i+ --+w>el-2)}

where

fi(z) = lrg[a/\)[(] {wjzi}, g(z)=max{e, jg[;] fi(z) for z € {0, 1}".
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Aggregated mixing inequalities

o (Mix-Ib) can be written as
{(r.2): yy2f(1—2), Viekl, n+ - +y=gl-2)}
where

fi(z) = lrg[a/\)[(] {wjzi}, g(z)=max{e, jg[;] fi(z) for z € {0, 1}".

Theorem [Kiling-Karzan, K., Lee, 2019+]
The polymatroid inequalities of g of the form
Yty > TFT(I —z)+ g(0) for m € EP;_g(0)

are aggregated mixing inequalities. They can be separated in O(kN log N) time.
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[ ERISRE BTSN RLIEL NI  Static Joint Chance-Constrained Programming

Example 2 (revisited)
The convex hull of

(v,2) €
RZ x {0,1}3

(v,2) €
R2 x [0,1]®

:{ (y,2) €

R2 x [0,1]3

Consider o = {2,3,1,4,5}.

y12>28(1—2z1) y2 > 3(1—z1)
y12>26(1—2) y2 241~ 2)
y12131—=2z3) , 222(1-2) ,n+y>7
y1 > (1—2z) y2 >2(1—z)
n>41-2z5)  y22>(1-2z)

the mixing inequalities for yi, y»
Yi+y2217—2z1 — 2z — 8z
Yi+y2 217 -2z, — 8z
Yi+y2>17 -3z — 7z
y1i+y2 217 -2z — 32 — 5z
Yi+y2 217 -4z —z, — 523

the mixing inequalities for yi, y»
the “aggregated” mixing inequalities for "y; + y»"
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Static Joint Chance Constrined Programming
Convex hull of (Mix-Ib)

Theorem [Kiling-Karzan, K., Lee, 2019+]

The following statements are equivalent:

(i) the convex hull of (Mix-Ib) is obtained after adding the mixing and the aggregated mixing
inequalities,

(i) f,...,f, g are submodular.

(iii) e satisfies the following 2 conditions:

1. I_(E) is e-negligible,
min min {wp;, wgi L, if I(e) # [N],
2. e < LW(E) = < p.ge[N\I(e) {JGZ[H { P QJ}} ( ) [ ] )
+00, if 1(e) = [N]
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[GENCHEL BT I NCEENINIEE  Two-stage (Dynamic) Chance-Constrained Programming
Outline

© Chance-Constrained Programming

o Two-stage (Dynamic) Chance-Constrained Programming
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Two-stage (Dynamic) Chance-Constrained Programming
Two-stage (dynamic) chance-constrained problem (2CCP)

e Order of events:
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e Order of events: x — w
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Two-stage (Dynamic) Chance-Constrained Programming
Two-stage (dynamic) chance-constrained problem (2CCP)

o Order of events: x — w — y(w)
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Two-stage (Dynamic) Chance-Constrained Programming
Two-stage (dynamic) chance-constrained problem (2CCP)

o Order of events: x — w — y(w)

* y(w) € R}?: second-stage decision vector for each w € Q
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Two-stage (Dynamic) Chance-Constrained Programming
Two-stage (dynamic) chance-constrained problem (2CCP)

o Order of events: x — w — y(w)

* y(w) € R}?: second-stage decision vector for each w € Q

A two-stage chance-constrained program:

min ¢’ x +Ew(g(w)Ty(w))
s.t. P{W(w)x+ T(w)y(w) > r(w)} >1—¢
xEXNX,y(w) eRP we Q.

o Assume (wlog) i.i.d sample (P(w) = 4) and g(w) > 0.
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[GENCHEL BT I NCEENINIEE  Two-stage (Dynamic) Chance-Constrained Programming

Static vs Dynamic Decisions

Multi-stage inventory control problem with a service level constraint [Zhang, K., Goel, 2014]

Costs($)
12375
12250 /
12125
: o Significant cost savings by dynamic model.
11250 — Static Model o Higher service level gives rise to higher cost.
11125 — Dynamic Model X L. -
o Static model: limited flexibility
11000 Dynamic model: large cost savings with
small decrease in service level
10875
10750
10625
10500

05 06 07 08 09 10 Service level
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[GENCHEL BT I NCEENINIEE  Two-stage (Dynamic) Chance-Constrained Programming

Deterministic Equivalent Formulation (DEF)

min c'x +%(g(w1)Ty(w1)21 +8W’) ¥z .+ g(w) T y(w")zw)
T(w')x +W(wh)y(wh) +Myz > r(wh)
T(w?)x + W(w?)y(w?) +WMozy > r(w?)
T(w")x + W(w")y(w") +Mnzy > r(w)

N
sz < |Ne]=p;, xEXNX, y(w)GR?,wEQ,zE]BN,
k=1

where M; is a vector of very large numbers, w e Q, and

I 0 if scenario w' is satisfied
! 1 otherwise.

Let g(w') = g, T(w') = T;, W(W') = W, r(w?) = 1.
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Decomposition algorithm for 2CCP

If there are second stage costs, and only a subset of scenarios are satisfied, then the traditional
Benders feasibility and optimality cuts are no longer valid.

Goal: Develop valid feasibility and optimality cuts to the master problem of 2CCP.
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[GENCHEL BT I NCEENINIEE  Two-stage (Dynamic) Chance-Constrained Programming

Decomposition algorithm for 2CCP
If there are second stage costs, and only a subset of scenarios are satisfied, then the traditional

Benders feasibility and optimality cuts are no longer valid.
Goal: Develop valid feasibility and optimality cuts to the master problem of 2CCP.

o First, the algorithm requires solving a master problem (MP):

1
MP(C, B) :)!nzlr;] cTx+ N Z ni
B i€V
s.t. Z zi<q
i€[N]
zeBY

xeXNX, neRY
(x,2) € F, (x,2,m) € O,

e F represents the collection of feasibility cuts and

o O represents the collection of optimality cuts.
o let P={xeXNX|Fy>0: Tix+ Wy >r} iec[N].

Kiigiikyavuz (IPCO Summer School)
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Two-stage (Dynamic) Chance-Constrained Programming
Subproblem 1 (SP1): Optimality Cut Generation (Basic)

o SP1 is used to cut off a feasible solution (X, 2) which has incorrect second stage value 7.

o If the solution (X, 2) is feasible, then V2; = 0, we solve single scenario linear optimization
problem (SP1;):

. T
Yi= min g;'y
y€ER[?

s.it. Wiy >r—Ti% (i)

where 1); is the vector of dual variables for kth scenario subproblem.

o If SP1; is feasible, then compare #; with Y;. If /j; < Y;, then add the modified Benders
optimality cut to O:

ni + Mz > ] (ri — Tix)
M; : big-M

o If SP1; (or equivalently (X, 2)) is infeasible, then go to the second subproblem (feasibility cut
generation). [Luedtke, 2014]
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[GENCHEL BT I NCEENINIEE  Two-stage (Dynamic) Chance-Constrained Programming

Computations

A call center staffing problem

Instances DEF Basic Decomposition
(N, ¢€) (n1,d) || Time (slvd) | Gap(%) || Time (slvd) | Gap(%)
(5.10) 558 (5) 0 54.6 (5) 0
(300,005 | (360) | 2583 (4) 0.1 134.2 (5) 0
(5.10) 126.0 (5) 0 258.3 (4) 0.1
(300, 0.1) | (36.20) || 12047 (4) 13 483.7 (3) 0.3
(5.10) 83.6 (5) 0 1338 (5) 0
(400, 0.05) |76 20) 781(3) 2.3 233.2 (5) 0
5,10 243 (5 0 220 (3 0.0
(400, 0.1) ((10,20)) >360(§ ()0) 34 909.8((5)) 0
(5.10) 170.6 (5) 0 221(5) 0
(500, 0.05) | 36,20y || >3600 (0) 2.9 313.2(5) 0
(5.10) 730 (2) 13 166 (3) 03
(500, 0.1) | 36.20) || >3600 (0) 5.8 142.7 (3) 0.3
Avg (Sum) (n, m) 916.2 (38) 3.2 276.1 (51) 0.2

ni: number of first stage variables (servers); d: number of customers.
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Two-stage (Dynamic) Chance-Constrained Programming
Improved optimality cuts [Liu, K., Luedtke, 2016]

o For a given oo € R™ and each i € [N], let

vi(a) = min{aTx: x € P;}

o Note vij(a) < a x for all feasible x

e Then an improved optimality cut with ¢ = ¢,T T; is:

ni + (¢,-Tfi - Vi(¢)> z > ¢ (1 — Tix).
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Two-stage (Dynamic) Chance-Constrained Programming
Improved optimality cuts [Liu, K., Luedtke, 2016]

o For a given oo € R™ and each i € [N], let
vi(a) = min{aTx: x € P;}
o Note vij(a) < a x for all feasible x
e Then an improved optimality cut with ¢ = ¢,T T; is:
i + (w,-Tfi - Vi(¢)> z > 4] (r = Tix).
For z; = 0, this is the traditional Benders cut, so it is valid.

For z; =1, we get 7; > vi(¢) — ¢x, so it is valid.
-~ ——

>0 <0
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Two-stage (Dynamic) Chance-Constrained Programming
Improved optimality cuts [Liu, K., Luedtke, 2016]

o For a given oo € R™ and each i € [N], let

vi(a) = min{aTx: x € P;}
o Note vij(a) < a x for all feasible x
e Then an improved optimality cut with ¢ = ¢,T T; is:

ni + (¢,-Tfi - Vi(¢)> z > ¢ (1 — Tix).

For z; = 0, this is the traditional Benders cut, so it is valid.

For z; =1, we get 7; > vi(¢) — ¢x, so it is valid.
-~ ——

>0 <0

e We also give another class of strong optimality cuts
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[GENCHEL BT I NCEENINIEE  Two-stage (Dynamic) Chance-Constrained Programming

Computational results with strong decomposition

Instances DEF Basic Decomp. Strong Decomp.
(N, €) (n1,d) Time(slvd) / gap Time / gap Time(slvd) / gap

(5,10) 120 1.8% 133
(2000, 0.05) | (10,20) 9.0% 1.8% 1012
(15,30) 14.6% 3.8% 343
(5,10) 165(2) / 6.5% 3.0% 131
(2500, 0.05) | (10,20) 9.5% 2.8% 1246
(15,30) - 3.3% 1246
(5,10) 262(1) / 5.9% 1.8% 273
(3000, 0.05) | (10,20) 17.4% 2.2% 2030

(15,30) - 3.2% 1207(2) / 0.4%

° . failed to find solution.

o If the algorithm hits the time or memory limit, we report the end gap, otherwise we report
time.

e For DEP (3000,0.05) (5,10), CPLEX successfully solved 1 instance in 262 seconds, and failed
to solve the other 2 instances, with 5.9% end gap.
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[GENCHEL BT I NCEENINIEE  Two-stage (Dynamic) Chance-Constrained Programming

Do we really know P?

e So far we discussed two-stage stochastic MIPs and chance-constrained programs with a

given (finite) PP.

e Do we really know P?

Kiigiikyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 107 / 133



Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming
Outline

© Chance-Constrained Programming

o Distributionally Robust Chance-Constrained Programming
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Chance-constrained program (CCP)

Consider chance-constrained programs in the general form:

T

min ¢ x
st. PY[f(x,£) >0]>1—g¢ (CCP)
x € X.

Often, we do not know P* precisely.

100 / 133
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Distributionally Robust Chance-Constrained Programming
Sample average approximation (SAA)

e Sample average approximation: draw i.i.d. samples {fi},-e[,\,] from P*.
1
P*[f(x,€) > 0] m Pu[f(x,€) > 0] := = > 1(f(x,&) > 0).

ic[N]
o Focus on constraint functions f(x, &) in piecewise linear form

(€)= min {(Br—ATX) e+ (dp— a7 )}
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Distributionally Robust Chance-Constrained Programming
Sample average approximation (SAA)

Approximate , (CCP) by

min ¢! x
X
1
st Z 1(f(x,&)>0)>1—¢,
i€[N]
MIP-representable
xeX.

Essentially, we need to ensure that that at least N(1 — €) samples satisfy f(x,&;) > 0.
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Distributionally Robust Chance-Constrained Programming
Sample average approximation (SAA)

Approximate , (CCP) by

min ¢! x
X
1
st 'Z 1(f(x,&)>0)>1—¢, (SAA)
i€[N]
MIP-representable
xeX.

Essentially, we need to ensure that that at least N(1 — €) samples satisfy f(x,&;) > 0.

The out-of-sample performance of the solution from (SAA) is often poor, particularly for small N.

e Just because Py[f(x,£) > 0] > 1 — € does not mean that P*[f(x,£) > 0] > 1 —e.
e The so-called “Optimizer's Curse” [Smith and Winkler, 2006].
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Improving out-of-sample performance

e Distributionally robust chance constrained program:

min ¢! x
st. P[f(x,£) >0]>1—¢€ VPe Fn(b), (DR-CCP)
x e X,

where Fn(0): an ambiguity set of distributions on R¥ that contains the empirical
distribution Pp:

Fn(0) :=A{P: d(Pn,P) <0}, w.h.p. P* € Fyn(0).

o Intuition: Py will be (w.h.p.) close to P*, so make sure P[f(x,£) >0] >1—cforall Pina
radius 0 ball around Py.

Fn(6)

o When N large, make the radius 6 smaller.

o When N small, we are not as confident that Py is close to P*, so make the radius @ larger.
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming
Ambiguity set

Wasserstein ambiguity set with radius 0:

Fn(0) :={P: dw(Pn,P) < 6}

where
dw (B, P') := in {E¢.eryonlllé = €'[I] - 1 has marginal distributions P, P’} .

Figure 2: Wasserstein distance dyw (Py, P): minimum distance required to transport grey bars to red curve.

Has recently become very popular in optimization and machine learning [Mohajerin Esfahani and
Kuhn, 2018].
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Distance to violation

e For a given parameter £ and decision x, define the distance to violation:

dist(&, x) 1= |Zf{||A|| s f(x, &€+ A) < 0}.

o Safe set S(x) = {¢: f(x,&) > 0}

dist(é,,S(x))

&
S
o, &

S@
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Distributionally Robust Chance-Constrained Programming
Reformulation of (DR-CCP)

We now need to reformulate semi-infinite constraint P[f(x,£{) > 0] > 1 —¢ V P € Fy(0).

o [Blanchet and Murthy, 2019], [Gao and Kleywegt, 2016], [Xie, 2019] show that for
Wasserstein ambiguity

P[f(x,£) > 0] >1—¢ VP e Fy(0) < CVaR}" (dist(¢,x)) > g

CVaR]fﬂE(dist(&,x)) := take the lowest eN distances amongst {dist(&;, x)}ic[ny
then take their average
o >0, i€ [N]

1
= t— — -
T eN ,-ez[ﬁ] T n < dist(€,x), i € [N]

Here larger distances are preferred, so distances are acceptability functionals rather than risk.
CVaR definition is adapted accordingly.
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Distributionally Robust Chance-Constrained Programming
Reformulation of (DR-CCP)

We now need to reformulate semi-infinite constraint P[f(x,£{) > 0] > 1 —¢ V P € Fy(0).

o [Blanchet and Murthy, 2019], [Gao and Kleywegt, 2016], [Xie, 2019] show that for
Wasserstein ambiguity

p 0
P[f(x,£) > 0] >1—¢ VP e Fy(0) < CVaR}¥ (dist(¢,x)) > —
€
CVaR]fﬂE(dist(&,x)) := take the lowest eN distances amongst {dist(&;, x)}ic[ny
then take their average
o >0, i€ [N]

1
= t— — -
T eN ,-ez[ﬁ] T n < dist(€,x), i € [N]

Here larger distances are preferred, so distances are acceptability functionals rather than risk.
CVaR definition is adapted accordingly.

e Usual SAA-CCP formulation implies VaR]fﬁE(dist(g,x)) > 0. Its (conservative) CVaR
approximation gives CVaR]fﬁE(dist({,x)) > 0. Compare with (DR-CCP).
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Distributionally Robust Chance-Constrained Programming
Reformulation of (DR-CCP)

This implies that (DR-CCP) can be reformulated as

min ¢ x
x,t,r
1
st. et>0+ N E ri, (DR-CCP-f)

icN]
t—r <dist(&,x), i€][n]
>0, i€[n]
x € X.
The last step is to reformulate the constraint t — r; < dist(&;, x).
e This depends on how we define f(x,&).
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Linear constraints

o For simple presentation, we focus on a single linear function with right-hand side uncertainty
(no bilinear term):

f(x,&):=¢6+d—a'x,
for given a, d.

e Distance to violation:
dist(¢,x) = max{0,£ + d — a' x} = max {0, f(x,£)}.

e Our results extend to polyhedral structures of the form

f(x, &) = Png}g] {(bp —ATX) T+ (dp — a;,rx)} > 0.

e The only condition we impose is that the bilinear term (ATX)Tf is the same for all p € [P].
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Reformulation of (DR-CCP)

However, t — r; < dist(§;, x) = max {0, f(x, &)}
<~ t—r<0 OR t—r <f(x,&).
is a non-convex constraint.
e We can model this with a binary variable and big-M constants:
z; € {0,1},

t—r < f(x,&)+ Mz
t—r < M;(l — Z,')

z; = 1 indicates when t — r; < 0, and z; = 0 indicates when t — r; < f(x, &;).
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Distributionally Robust Chance-Constrained Programming
Reformulation of (DR-CCP)

However, t — r; < dist(§;, x) = max {0, f(x, &)}
<~ t—r<0 OR t—r <f(x,&).
is a non-convex constraint.
e We can model this with a binary variable and big-M constants:
z; € {0,1},

t—r < f(x,&)+ Mz
t—r < M;(l — Z,')

z; = 1 indicates when t — r; < 0, and z; = 0 indicates when t — r; < f(x, &;).

e M, is a sufficiently large constant. For some fixed optimal decision x of (DR-CCP), we need
M; > |f(x,&)| Vi€ [N].

Choosing in this way requires understanding the structure of optimal solutions, which is not
easy, and can still result in large values.
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Distributionally Robust Chance-Constrained Programming
The basic MIP reformulation of (DR-CCP)

[Chen et al., 2018], [Xie, 2019] gave the following MIP reformulation for (DR-CCP):

min ¢ x
z,r,t,x

st. ze{0,1}N, >0, r>0, x€ X,
1
et>0+ N Z r, (DR-CCP-MIP)
i€[N]
M,‘(l*Z,‘)Zt*I‘,’, IG[NL
f(X,g,')+ M,‘Z,' >t— ti, i € [N]

Difficult to solve, especially for small 6 even for N = 100.
In [Ho-Nguyen, Kiling-Karzan, K., Lee, 2021a], we scale this up to N = 1000 ~ 3000.
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Improvements to (DR-CCP-MIP) [Ho-Nguyen,Kiling-Karzan, K., Lee,
2021a-+]

Our key insight finds a link between (SAA) and (DR-CCP). This leads to a number of
enhancements.

DR-CCP with
Wasserstein Ambiguity

7 3 N

SAA for CCP CVaR Formulation

« Stronger Formulation * Variable bounds Robust 0-1 ngram
* Improved Big-M from quantile “ * Constraint reduction “ * Path Inequalities

* Mixing Inequalities * A “robust” substructure
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Distrbutionally Robust Chance-Constrained Programming
Connection to (SAA)

Denote the feasible regions of (SAA) and (DR-CCP) as
Xsaa = {X EX: ]P)N[f(x7£) > 0] >1- E}a

1
NE wi <e, we{0,1}N
=4XxXEX: i€[N]

f(x,&) + Miw; >0, i€][N]

= : inf P[f >0 >1-—
Fori= {xex: nf Fx©2021-c]

1
5t29+ﬁ Z ri, ze {01}V
i€[N]

CMi(1-z)>t—r, i€l[N]
f(x, &)+ Mz >t—r, i€cl[N]
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Distrbutionally Robust Chance-Constrained Programming
Connection to (SAA)

Denote the feasible regions of (SAA) and (DR-CCP) as
XSAA = {X eX: ]P)N[f(x7£) > 0] >1 _6}’

1
NE wi <e, we{0,1}N
=4XxXEX: i€[N]

f(x,&) + Miw; >0, i€][N]

= : i >01>1—
XpR {X ex Pegw)]?[f(x,g) >0]>1 e}

1
5t29+ﬁ Z ri, ze {01}V
i€[N]

CMi(1-z)>t—r, i€l[N]
f(x, &)+ Mz >t—r, i€cl[N]

Observation: in general Fy(0) = {Py} C Fn(0) for any 6 > 0, so Xpr C Xsaa.

Naively, BLUE constraints are valid for Xpg, but require different binary variables (w vs. z).
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Stronger formulation

Key result 1: for both RED and BLUE constraints, the same binary variables z can be used.

min ¢ x
z,r,t,x

st. ze{0,1}N, t>0, r>0, xe X,
1

et>0+ — ri,

> +N;EZ[/;/]
Mi(1—z)>t—r, i€[N]
f(x,&)+ Mz > t—r, i€][N]
1
N Z zi <,

i€[N]
f(x, &)+ Mz >0, i€[N].
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Big-M reduction via the mixing procedure

Key result 2: we gain much more from the SAA constraints

Dz <eN, f(x,&) + Mz >0, Vi € [N].
i€[N]

(Mixing procedure) [Luedtke et al., 2010] showed that we can drastically reduce M; to

Z zi < €N, f(x,&)+ miz; >0, Vi € [N].
i€[N]
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Big-M reduction via the mixing procedure

Key result 2: we gain much more from the SAA constraints

Dz <eN, f(x, &)+ Mz >0, Vi € [N].
i€[N]

(Mixing procedure) [Luedtke et al., 2010] showed that we can drastically reduce M; to
Do z<eN,  f(x,&)+miz >0, Vie[N].
ieN]
o For each i € [N], we have the inequalities

t*F,'SM,‘(l*Z,‘), t*f[Sf(X,f,‘)%’M/Z,‘
0< f(X,{,‘)+m,‘Z,'.

o It is easily checked that these imply
t—r < f(x, &)+ miz.

o These can replace the inequalities t — r; < f(x,&;) + M;z; in (DR-CCP-MIP).
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Distributionally Robust Chance-Constrained Programming
Compact formulation of (DR-CCP-MIP) via CVaR interpretation

Key result 3: recall that the DR-CCP is

P 1 r>0,i¢€ [N] 0
CVaR, M _(dist(¢, = t— — = > —.
3R, (dist(€, X)) ”r’f’rx{ D DL r < dist(€,x), i€ [N [ = ¢
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Distributionally Robust Chance-Constrained Programming
Compact formulation of (DR-CCP-MIP) via CVaR interpretation

Key result 3: recall that the DR-CCP is

1 >0, i €[N
CVaRfﬂE(dist(ﬁ,x)):max t— — E I7H = ; (V] . > 2
t,r eN e t —r <dist(&;, x), i € [N] €
e There always exists an optimal solution to the program such that
t = (leN] + 1)-th smallest value amongst {dist(f,-,x) =(&+d— aTx)+}_ ]
e
q = (LeN] + 1)-th smallest value amongst {&;};cin;-
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Distributionally Robust Chance-Constrained Programming
Compact formulation of (DR-CCP-MIP) via CVaR interpretation

Key result 3: recall that the DR-CCP is

1 >0, i €[N
CVaRfﬁE(dist(ﬁ,x)):max t— — E I7H = ; (V] . > g
t,r eN e t —r <dist(&;, x), i € [N] €
e There always exists an optimal solution to the program such that
t = (leN] + 1)-th smallest value amongst {dist(f,-,x) =(&+d— aTx)+}_ ]
e
q = (LeN] + 1)-th smallest value amongst {&;};cin;-

o Suppose & > g. Then immediately t < dist(&;, x). But then
t—r < dist({,-,x) <~ 0<ri+ (dist({,-,x) — t) .

Therefore when &; > g, this constraint is vacuous, so we can remove N — [eN] constraints.
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Strengthened compact formulation of (DR-CCP-MIP)

min ¢! x
Z,r,t,x

st. ze{0,1}N, t>0, r>0, xe X,
1

et>0+ — ri,

> +Nl_€2[,:\l]
Mi(l—z)>t—r, i€][N],
f(x,&)+ (g —¢&)z >0, i€l[N],
1
N Z zi <,

i€[N]
f(x,q)—t>0
f(x,&)+mizi>t—r;, i€[N]st g>¢&.
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Distributionally Robust Chance-Constrained Programming
Valid inequalities for (DR-CCP-MIP)

Key result 4: classes of valid inequalities can be derived by analysing different substructures in
the formulation.

o Consider again the so-called mixing substructure from the (SAA) constraints:

f(X7§i)+miZi >0, i€ [N]
MIX = ¢ (x,z) :

ze {0, 1}V
conv(MIX) = MIX N {mixing inequalities} .

e There is also a substructure arising from robust 0-1 programming [Bertsimas and Sim, 2003]:
f(x, &)+ mizi>t—r, i €[N]lstq>§&

z e {o,1}" }

conv(ROB) = ROB N {path inequalities [Atamtiirk, 2006]} .

ROB = {(x,z, r,t):
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming
Computational study

A distributionally robust chance-constrained transportation problem [Chen et al., 2018].

Given a set of factories [F] with capacities my¢, f € [F], a set of
distribution centers [D] must meet the random demands &4,
d € [D] with high probability at minimum cost.

st. P xw>&, Vde[D]| >1—¢ PeF(0),
fE[F]
> xw <myp, fEF],
de[D]
Xfq > 0, fG[F], dG[D].
F=5 D=50 =01, 601 = 0001, 6; = & 0max j = 2,...,10
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Performance analysis

We compare the following formulations (1 hour time limit)
e Basic: the basic formulation
e Improved: the strengthened compact formulation

e Mixing+Path: the strengthened compact formulation with both mixing and path inequalities.

Metrics:
e Time: recorded in seconds if instance is solved to optimality within one hour.

e Gap: if instance not solved in one hour, the final optimality gap as a percentage.
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Summary of computational results

N = 100
Basic Improved Mixing+Path
Time(Gap)™ | Time Time  M/P Cuts
61 *(1.16)0 4.29 840  41.7/274.6
0, 26.58(*) 0.04 0.06 0.3/88.2
03 4.27(*%) 0.04 0.05 0.0/73.8
N = 3000
Basic Improved Mixing+Path
Time(Gap)™ ‘ Time(Gap) ™ ‘ Time(Gap)™™¢ M/P Cuts
01 n/a® *(0.78)10 *(0.48)10  1470.3/4228.1
6, *(69.56)° *(0.49)10 *(0.41)10 0.0/6102.2
03 *(48.65)* 17.89(*) 18.29(*) 0.0/200.8
04 *(15.01)* 13.74(%) 13.94(*) 0.0/94.1
65 *(1.11)10 12.75(*) 13.55(*) 0.0/88.3
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Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Summary of computational results

N = 3000
Basic Improved Mixing+Path

R.time R.gap ‘ R.time R.gap ‘ R.time R.gap
01 n/a n/a 72.08 0.80 3601.05 0.48
6> 3144.09 70.41 134.46 0.55 3600.22 0.41
03 2952.26 51.31 17.89 0.01 18.29 0.01
04 2684.77 15.72 13.74 0.01 13.94 0.01
05 3181.43 1.14 12.75 0.00 13.55 0.00
06 3176.11 0.63 12.29 0.00 12.68 0.00
67 2958.81 0.55 12.28 0.01 12.95 0.01
Og 2876.49 0.47 12.48 0.01 12.65 0.01
) 2781.77 0.45 11.96 0.01 12.52 0.01
610 2439.69 0.41 8.04 0.01 8.94 0.01
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Discussion

o Strong reformulation of (DR-CCP) that exploits connections with various other models for
uncertainty
e nominal (SAA) relaxation
e conditional value-at-risk (CVaR) interpretation

e a substructure that arises in robust 0-1 programming.
Using these connections we provided two classes of valid inequalities for (DR-CCP).

o Extended to more general polyhedral safety sets involving multiple linear constraints and
left-hand side uncertainty. [Ho-Nguyen,Kiling-Karzan, K., Lee, 2021b+]

o Left-hand side uncertainty case involves conic constraints in the form

[Ax]lp < t.

e [Xie, 2019] use polymatroid inequalities to strengthen the formulation when x is a pure binary
decision vector, using submodularity of ||Ax||,.

o [Kiling-Karzan, K., and Lee, 2020+] extend the polymatroid inequalities to obtain valid inequalities
when x is mixed-binary. (MIP Workshop, May 25, 2021)

e Submodularity can also be exploited for distributionally robust pure binary optimization problems
under moment-based ambiguity sets, e.g., [Zhang et al., 2018].
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Parting thoughts

e Stochastic optimization problems often give rise to large-scale MIPs

e Opportunities for theoretical, methodological, and computational MIP research

» Wide range of applications with broad impact (disaster logistics, energy, healthcare, and
more).
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