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Agenda

In the next two days, we will discuss

• Two-stage stochastic mixed-integer programs (MIPs):

• Large-scale MIPs

• How to decompose?

• Desirable algorithmic properties: Finite convergence, scalability

• Other stochastic (continuous) optimization problems

• Risk measures/distributional ambiguity modeled as MIPs

• Exploit combinatorial structure for improved formulations

• Theory, algorithm design, computations, and (some) applications.
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Two-Stage Stochastic Integer Programming

Motivation and Scope

Motivation:

• Large capital investment decisions must hedge against uncertain future

• First stage: Strategic decisions (Warehouse/data center/power generator locations)

• Second stage: Operational decisions (Shipments/routing/distribution)

• Applications: Energy, telecommunications, healthcare, supply chain, finance ...

Scope:

• Focus on Benders type methods

• Will not cover other methods such as Lagrangian relaxation, column generation, etc.
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Two-Stage Stochastic Integer Programming

An Example: Stochastic Server Location and Sizing (SSLS)

Applications:

• Preparation and execution of disaster plans

• Location and sizing of data centers in cloud computing

• Supply chain planning with disruptions

• Battery charging infrastructure for electric vehicles
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Two-Stage Stochastic Integer Programming

Planning Locations to Hedge Against Demand Uncertainty

There are two sets of decisions:

• First stage: Determine data center locations (binary) and number of servers to locate
(general integer)

• Second stage (once random demand is realized): Allocate servers to customers

• Constraints: capacity, demand satisfaction, etc.
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Two-Stage Stochastic Integer Programming

Deterministic Server Location Problem

Observed demand nodes, Optimal server location

Scenario 1:

Scenario 2:

Suppose each scenario is equally likely? What is the optimal server location plan?
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Two-Stage Stochastic Integer Programming

Stochastic Server Location Problem

Hedged Optimal Solution

Dynamic Response to Demands/Threats
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Two-Stage Stochastic Integer Programming

Stochastic Server Location Problem

Hedged Optimal Solution

Dynamic Response to Demands/Threats

Scenario 2:
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Linear Programming

Standard (Risk-Neutral) Stochastic Programming Formulation

• ω̃: a random vector with support Ω

• Order of events:

x → ω → y(ω)

• x ∈ X := {x ∈ Rn−n1
+ × Zn1

+ : Ax ≥ b}: first-stage decision vector

• y(ω) ∈ Rn2
+ : second-stage decision vector for each ω

• X ,Y: integer, continuous and sign restrictions on x , y , resp.
A two-stage stochastic program:

min c>x + Eω̃(h(x , ω̃))

s.t. Ax ≥ b,

x ∈ X ,

where

h(x , ω) = min y0

y0 − g(ω)>y = 0

W (ω)y ≥ r(ω)− T (ω)x

y ∈ Y.

• All second stage data can be random (T (ω),W (ω), r(ω), g(ω))
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Linear Programming

Finite sample space assumption

• We consider the setting where Ω is a finite sample space:

Ω = {ω1, . . . , ωN}

• Even if Ω is not finite, we can approximate it via an empirical distribution (see the theory of
Sample Average Approximation (SAA), e.g., [Shapiro et al., 2009].

• Often, N is very large.

• Let pi ∈ [0, 1]: probability of scenario ωi ∈ Ω, where
∑

i∈[N] pi = 1.
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Linear Programming

Deterministic Equivalent Formulation

min c>x +p1g>(ω1)y(ω1) +p2g>(ω2)y(ω2) + · · · +pNg
>(ωN)y(ωN)

s.t Ax ≥ b

T (ω1)x +W (ω1)y(ω1) ≥ r(ω1)

T (ω2)x +W (ω2)y(ω2) ≥ r(ω2)

...
. . .

...

T (ωN)x +W (ωN)y(ωN) ≥ r(ωN)

x ∈ X , y(ωi ) ∈ Y, i ∈ [N].

It’s HUGE!!!
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Linear Programming

Review of Benders Decomposition Algorithm

Algorithms for two-stage stochastic program with continuous second-stage variables:

Benders’ decomposition [Benders, 1962], L-shaped method [van Slyke and Wets, 1969]

Master Problem MPk at iteration k = 0, 1, . . . ,

MPk : min c>x +
∑
ωi∈Ω

piηωi

s.t Ak (x , η) ≥ bk ,

x ∈ X

where ηj approximates the second-stage value function of scenario j .

• Ak (x , η) ≥ bk includes:

• Ax ≥ b

• Optimality cuts generated from the subproblems in iterations j = 1, . . . , k − 1

• Feasibility cuts generated from the subproblems in iterations j = 1, . . . , k − 1
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Linear Programming

Subproblems

Subproblem SPk (x , ω), ω ∈ Ω at iteration k = 0, 1, . . . ,

Given (x , η), the solution of the master problem at iteration k, solve for each ω:

SPk (x , ω) : hk (x , ω) := min g(ω)>y(ω)

s.t W (ω)y(ω) ≥ r(ω)− T (ω)x ,

y(ω) ∈ Rn2
+ ,

Let ψk
ω be the dual vector of the subproblem SPk (x , ω).

• If SPk (x , ω) is feasible, but ηω < hk (x , ω), then add the optimality cut

ηω ≥ ψk
ω
>

(r(ω)− T (ω)x)

• If SPk (x , ω) is infeasible, then its dual is unbounded, so using the corresponding dual ray
ψk
ω , add the feasibility cut

0 ≥ ψk
ω
>

(r(ω)− T (ω)x)
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Linear Programming

x

ηω(x)

(r(ω)− T (ω)x)>ψ1
ω

(r(ω)− T (ω)x)>ψ2
ω

(r(ω)− T (ω)x)>ψ3
ω

((r(ω)− T (ω)x)>ψk
ω

Figure 1: Piecewise-linear function, ηω(x), for continuous recourse
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Two-Stage Stochastic Integer Programming Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming

Classification Scheme For Stochastic MIPs

B = Stages with Binary decision variables

C = Stages with Continuous decision variables

D = Stages with Discrete (general integer) decision variables.

For example, two-stage stochastic MIP with continuous recourse has: B = D = {1},C = {1, 2}.
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Two-Stage Stochastic Integer Programming Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming

Literature Overview

First-stage Second-stage

Laporte and Louveaux (1993)

Sen and Sherali (2006) Binary Mixed-integer

Carøe and Tind (1997)

Sherali and Zhu (2007) Mixed-binary Mixed-binary

Carøe and Tind (1998) Mixed-integer Integer

Schultz et al. (1998) Continuous Integer

Ahmed et al. (2004) Mixed-binary Integer

Sherali and Fraticelli (2002)

Sen and Higle (2005)

Ntaimo and Sen (2005, 2008) Binary Mixed-binary

Ntaimo (2009)

Gade, K., Sen (2012) Binary Integer

Kong et al. (2006)

Trapp et al. (2013) Integer Integer

Zhang and K. (2014)

Qi and Sen (2017, 2021+) Mixed-Integer Mixed-Integer
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Outline

1 Two-Stage Stochastic Integer Programming
Two-Stage Stochastic Linear Programming
Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming
Two-Stage Stochastic Pure Integer Programming
Two-Stage Stochastic Mixed-Integer Programming

2 Chance-Constrained Programming
Static Joint Chance-Constrained Programming
Two-stage (Dynamic) Chance-Constrained Programming
Distributionally Robust Chance-Constrained Programming
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

A Two-Stage Stochastic Integer Program

Consider binary first stage and general integer second stage variables (i.e., B={1,2}, D={2}, C=∅)

min c>x + E [h(x, ω̃)]

s.t. Ax ≥ b

x ∈ Bn
,

where for a particular realization (scenario) ω of ω̃, h(x, ω) is defined as

h(x, ω) = min y0

s.t. y0 − g(ω)>y = 0

W (ω)y ≥ r(ω)− T (ω)x

y0 ∈ Z, y ∈ Zn2
+

• ω̃ is defined on (Ω,F, P) and has finite support

• Y (x, ω) := {y0 ∈ Z, y ∈ Zn2
+ : y0 − g(ω)>y = 0,W (ω)y ≥ r(ω)− T (ω)x}.

• Relatively complete recourse

• SIP has a finite optimum
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Problem Structure

Deterministic Equivalent of SIP

min c>x +p1g(ω1)>y(ω1) + p2g(ω2)>y(ω2) + · · ·+ pNg(ωN )>y(ωN )

Ax ≥ b

T (ω1)x +W (ω1)y(ω1) ≥ r(ω1)

T (ω2)x + W (ω2)y(ω2) ≥ r(ω2)

.

.

.
. . .

.

.

.

T (ωN )x +W (ωN )y(ωN ) ≥ r(ωN )

x ∈ Bn
, y(ω) ∈ Zn2 , ω ∈ Ω.

• Large-scale integer program

• For a fixed x ∈ X , SIP decomposes by scenario
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Value Function Reformulation and Challenges

• Recall X ∩ X = {x ∈ Bn : Ax ≥ b}.

• Standard approach in L-shaped decomposition is the value function reformulation of SIP:

min
x∈X∩X

{c>x + η : η ≥ Q(x)}, Q(x) := E(h(x , ω̃))

• If second stage is a linear program → h(·, ω), ω ∈ Ω: value function of an LP. It is piecewise
linear and convex. Benders’ decomposition and L-Shaped decomposition exploit this property.
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Challenge for SIP

If second stage is an integer program, then h(·, ω): value function of an integer program [Blair
and Jeroslow, 1982]. It is non-linear & non-convex.
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Fig. 1. Objective function of (EX).

allows for the construction of optimality cuts that approximate the non-convex second-
stage value function at the binary first-stage solutions. The authors proposed a branch-
and-bound algorithm to search the space of the first-stage variables for a globally optimal
solution, while using optimality cuts to approximate the second-stage value function.
Finite termination of the algorithm is obvious since the number of first-stage solutions
is finite. Unfortunately, the algorithm is not applicable if any of the first-stage variables
is continuous. Carøe and Tind [7] generalized this algorithm for mixed-integer first-
and second-stage variables. Their method uses non-linear integer programming dual
functions to approximate the second-stage value function in the space of the first-stage
variables. The resulting master problem then consists of non-linear (possibly discontin-
uous) cuts, and no practical method for its solution is currently known.

Carøe [5, 6] used the scenario decomposition approach of Rockafellar and Wets [17]
to develop a branch-and-bound algorithm for stochastic integer programs. Lower bounds
were obtained from the Lagrangian dual derived by dualizing the non-anticipativity con-
straints. The subproblems of the Lagrangian dual correspond to the scenarios and include
variables and constraints from both the first and second stage. These subproblems are
more difficult to solve than in Benders-based methods, where a subproblem corresponds
to only the second-stage problem for a particular scenario. Furthermore, although the
Lagrangian dual provides very tight bounds, its solution requires the use of subgradient
methods and is computationally expensive. A limitation of this approach is that finite
termination is guaranteed only if the first-stage variables are purely discrete, or if an
ε−optimal termination criterion with ε > 0 is used [5, 6].

From [Ahmed et al., 2004]

How to create “good” lower bounding approximations practically?
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

L-Shaped Algorithms for 2-Stage SMIP - Literature

• Integer L-shaped method [Laporte and Louveaux, 1993]: Binary first stage, mixed-integer
second stage - First stage B&B and linear optimality cuts. Solve second stage MIPs to
optimality. Improved in [Angulo et al., 2016]

• Disjunctive Cuts for mixed-binary second stage: e.g., [Carøe and Tind, 1997], [Sherali and
Fraticelli, 2002], [Sen and Higle, 2005], [Sen and Sherali, 2006], [Ntaimo and Sen, 2007],
[Ntaimo, 2009].

• Computations: e.g., [Laporte et al., 2002], [Ntaimo and Sen, 2005, 2008], [Yuan and Sen,
2009], [Ntaimo and Tanner, 2008].

• Global Optimization and other approaches for pure integer second stage: e.g., [Ahmed et al.,
2004], [Kong et al., 2006], [Schultz et al., 1998], [Schultz and Hemmecke, 2003],[Klein, 2020]

• Gomory cuts for SMIP: [Carøe and Tind, 1998]
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Gomory Fractional Cuts (GFC) for Deterministic Pure IPs

• Given first-stage vector x̄ , solve the LP relaxation of the second-stage IP with simplex.

• Let B,N - Basic and nonbasic column index sets of LP.

• Re-write source row, with νi 6∈ Z, as

yBi +
∑
j∈N

w̄ijyj = νi (x̄),

•
yBi +

∑
j∈N
dw̄ijeyj︸ ︷︷ ︸

∈Z

≥ yBi +
∑
j∈N

w̄ijyj = νi (x̄)︸ ︷︷ ︸
6∈Z

.

• Let ξ(β) := dβe − β.

• Derive a GFC : yBi +
∑

j∈N dw̄ijeyj ≥ dνi (x̄)e.
or equivalently, ∑

j∈N
ξ(w̄ij )yj ≥ ξ(νi (x̄)).

• A pure cutting plane algorithm using GFC is finitely convergent if one chooses the source row
as the variable with the smallest index and use lexicographic dual simplex [Gomory, 1963]
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Gomory Cuts for SMIP: [Carøe and Tind, 1998]

Continuous first stage, pure integer second stage.

• Solve the second stage problem using Gomory cuts to optimality for each x , ω

• Construct the optimal subadditive dual function Cω (Chvàtal function - nonlinear and
nonconvex)
Cω(d) = V dMtdMt−1 · · · dM2dM1dee · · · e, where Mj ,V are rational matrices

• First-stage optimality cuts:

η ≥
∑
ω∈Ω

pωCω((r(ω)− T (ω)x))

• It is possible to represent Cω using integer variables - growth is explosive even for a single x

• Conceptual algorithm, computationally unattractive

Research Question: Can we use Gomory cuts to develop a computationally amenable L-shaped
algorithm for SIP?
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 28 / 133



Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Gomory Cuts for SMIP: [Carøe and Tind, 1998]

Continuous first stage, pure integer second stage.

• Solve the second stage problem using Gomory cuts to optimality for each x , ω

• Construct the optimal subadditive dual function Cω (Chvàtal function - nonlinear and
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nonconvex)
Cω(d) = V dMtdMt−1 · · · dM2dM1dee · · · e, where Mj ,V are rational matrices

• First-stage optimality cuts:

η ≥
∑
ω∈Ω

pωCω((r(ω)− T (ω)x))

• It is possible to represent Cω using integer variables - growth is explosive even for a single x

• Conceptual algorithm, computationally unattractive

Research Question: Can we use Gomory cuts to develop a computationally amenable L-shaped
algorithm for SIP?
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Decomposition-based cutting plane approximations - Strategy

• Partition first stage and second stage

• Solve the master problem (first stage) and obtain x̄

• Solve LP relaxation of second stage sub-problems for given x̄ for each ω ∈ Ω

• If the sub-problem is non-integral, generate violated cut(s) π(ω)>y ≥ π0 and re-solve sub-LP

• Lift this inequality to obtain π(ω)>y ≥ π0(x , ω)

• Add Benders optimality cut to the master problem

• For mixed binary second stage, and disjunctive cuts, π0(·, ω) is piecewise linear concave [Sen and
Higle, 2005]

• What about general integers and Gomory cuts?

Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 29 / 133



Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Decomposition-based cutting plane approximations - Strategy

• Partition first stage and second stage

• Solve the master problem (first stage) and obtain x̄

• Solve LP relaxation of second stage sub-problems for given x̄ for each ω ∈ Ω

• If the sub-problem is non-integral, generate violated cut(s) π(ω)>y ≥ π0 and re-solve sub-LP

• Lift this inequality to obtain π(ω)>y ≥ π0(x , ω)

• Add Benders optimality cut to the master problem

• For mixed binary second stage, and disjunctive cuts, π0(·, ω) is piecewise linear concave [Sen and
Higle, 2005]

• What about general integers and Gomory cuts?
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• If the sub-problem is non-integral, generate violated cut(s) π(ω)>y ≥ π0 and re-solve sub-LP

• Lift this inequality to obtain π(ω)>y ≥ π0(x , ω)

• Add Benders optimality cut to the master problem

• For mixed binary second stage, and disjunctive cuts, π0(·, ω) is piecewise linear concave [Sen and
Higle, 2005]

• What about general integers and Gomory cuts?
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Lifting Gomory Cuts for Second Stage

min{−x + h(x) : x ∈ {0, 1}}
h(x) = min{−y1 : 2y1 + 3y2 = 4 + x , y1, y2 ∈ Z+}

y2

y1

x = 0

x = 1
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Lifting Gomory Cuts for Second Stage

• min{−x + h(x) : x ∈ {0, 1}}, where h(x) = min{−y1 : 2y1 + 3y2 = 4 + x , y1, y2 ∈ Z+}
• First-stage solution: x = 1

• Source row: y1 + 3
2
y2 = 5

2

• Gomory Cut: 1
2
y2 ≥ 1

2
(Not valid for x = y2 = 0, y1 = 2)

y2

y1

x = 0

x = 1

• Carøe and Tind approach: 1
2
y2 ≥ d x2 e −

x
2

(Nonlinear)
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Desiderata

• A second-stage cut that is valid for all x .

• A first-stage cut that is affine in x .

• Finite convergence
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Lifting Gomory Cuts for Second Stage

Want the cut to be valid for all x . Let x ′ := 1− x . Write source row as:

y1 +
3

2
y2 = 2 +

(1− x ′)
2

Gomory Cut:
1

2
x ′ +

1

2
y2 ≥

1

2
≡ y2 ≥ 1− x ′ = x

(affine in x)

y2

y1

x = 0

x = 1
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Gomory Fractional Cuts - RHS as functions of x

• Assume w.l.o.g (by complementation, if necessary) that x̄j = 0,∀j = 1, . . . , n1.

• Fix x̄ ∈ X , ω̄ ∈ Ω. B,N,B,N - Basis, nonbasic columns, basic and non-basic index sets of
LP h`(x̄ , ω̄). Re-write second stage constraints Wy = r − Tx̄ :

yB + B−1N︸ ︷︷ ︸
w̄ij

yN = B−1r︸ ︷︷ ︸
ρ

−B−1T︸ ︷︷ ︸
Γ

x̄ =: ν.

• Re-write source row, with νi 6∈ Z, in terms of x as

yBi +
∑
j∈N

w̄ijyj +

n1∑
j=1

γijxj = νi ,

• Let ξ(β) := dβe − β. Derive a parametric GFC in the space of (x , y)-variables

∑
j∈N

ξ(w̄ij )yj ≥ ξ(νi )−
n1∑
j=1

ξ(γij )xj .

• When x = x̄ we recover the original GFC. This GFC is valid for all binary x-variables.

• Furthermore, π(ω̄)>y ≥ π0(x , ω̄), π0(·, ω) is affine.
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Gomory Driven Decomposition Algorithm - Notation

• Second-stage linear approximations at the beginning of iteration k

hk−1
` (x , ω) = min y0

y0 − g(ω)>y = 0

W k−1(ω)y ≥ rk−1(ω)− T k−1(ω)x

y0 ∈ R, y ∈ Rn2
+ .

• ψk (ω): Dual multipliers of second-stage LP at iteration k

• yk (x , ω): Lex-smallest solution to second-stage LP at iteration k, given x , ω

• Lower bounding Master Problem MPk

min c>x + η

Ax ≥ b

η ≥
∑
ω∈Ω

pω(ψt
ω)>(r t(ω)− T t(ω)x), t = 1, . . . , k

x ∈ Bn1 , η ∈ R.

• LBk ,UBk Lower and upper bounds on the SIP optimal solution
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Gomory Driven Decomposition Algorithm is finitely convergent [Gade, , and
Sen, 2014]

Initialization: k = 1, LB1 = −∞, UB1 = ∞
W 0(ω) = W (ω), T 0(ω) = T (ω), r0(ω) = r(ω)

Solve MPk. Obtain xk+1, LBk+1

Solve fk−1
ℓ (xk, ω), ω ∈ Ω

LBk < UBk?

y(ω) ∈ Zn2+1∀ω?Generate Optimality Cut

Update UBk+1

∀ω : y(ω) /∈ Zn2+1

Get GFC from lowest frac index
Re-solve using Lex-Dual Simplex
Generate Optimality Cut

Stop

k = k + 1

Yes No

Yes

x1 ∈ X

No
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Two-Stage Stochastic Integer Programming Two-Stage Stochastic Pure Integer Programming

Proof of Convergence - Sketch

• Let xk = x̄ and x t = x̄ , t > k

• Let αk (x̄ , ω) :=
(
yk−1

0 (x̄ , ω), yk−1
1 (x̄ , ω), . . . , yk−1

ik−1(x̄ , ω), dyk−1
ik

(x̄ , ω)e, 0, . . . , 0
)>

.

• Gomory cut for first fractional yik and lex-dual simplex gives yk (x̄ , ω) � αk (x̄ , ω)

• Gomory cuts added during iterations k + 1, . . . , t − 1 are all valid for Y (x̄ , ω).

• So y t−1(x̄ , ω) � yk (x̄ , ω) � αk (x̄ , ω).

• αt(x̄ , ω) � y t−1(x̄ , ω) by definition.

• Hence αt(x̄ , ω) � αk (x̄ , ω).

• In finitely many steps, we obtain integral solutions for a given (x̄ , ω) for all k ≥ K(x̄ , ω).

• Finitely many (x , ω) ∈ X × Ω⇒ in finitely many steps hk` (x , ω) gives integral solutions
∀(x , ω) with k ≥ K = sup(x,ω) K(x , ω) (worst case).

• Then the dual polyhedra of sub-problems remain fixed. Obtain full reformulation of SIP in
(x , η).
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• So y t−1(x̄ , ω) � yk (x̄ , ω) � αk (x̄ , ω).

• αt(x̄ , ω) � y t−1(x̄ , ω) by definition.

• Hence αt(x̄ , ω) � αk (x̄ , ω).

• In finitely many steps, we obtain integral solutions for a given (x̄ , ω) for all k ≥ K(x̄ , ω).

• Finitely many (x , ω) ∈ X × Ω⇒ in finitely many steps hk` (x , ω) gives integral solutions
∀(x , ω) with k ≥ K = sup(x,ω) K(x , ω) (worst case).

• Then the dual polyhedra of sub-problems remain fixed. Obtain full reformulation of SIP in
(x , η).
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Example from Literature

Variations of this example appear in [Schultz et al., 1998], [Sen et al., 2003], [Ahmed et al., 2004]

min − 1.5x1 − 4x2 + E[f (x , ω̃)]

s.t. x ∈ {0, 1}2

where

f (x , ω) = min y0

s.t. y0 + 16y1 + 19y2 + 23y3 + 28y4 − 100R = 0

2y1 + 3y2 + 4y3 + 5y4 − R ≤ r1(ω)− x1

6y1 + 1y2 + 3y3 + 2y4 − R ≤ r2(ω)− x2

y0 ∈ Z, yi ∈ {0, . . . , 5}, i = 1, . . . , 4,R ∈ Z+,

Ω = {1, 2}, p1 = p2 = 0.5.

(r1(1), r2(1)) = (10, 4), (r1(2), r2(2)) = (13, 8).

zk (x) := c>x + max
t=1,...,k

∑
ω∈Ω

pω(ψt
ω)>(r t(ω)− T t(ω)x)

 .
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Best LP Approximation
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Approximation at k = 1
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Approximation at k = 2
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Approximation at k = 3
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Approximation at k = 4
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Approximation at k = 5
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Approximation at k = 6
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Approximation at k = 7
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Deterministic Equivalent Comparison - SSLP Instances

Instances DEF Gomory
Time Gap Time Gap

SSLP 5 25 50 2.03 0.00 0.18 0.00
SSLP 5 25 100 1.72 0.00 0.22 0.00
SSLP 5 50 50 1.06 0.00 0.27 0.00

SSLP 5 50 100 3.56 0.00 0.48 0.00
SSLP 5 50 1000 212.64 0.00 2.88 0.00
SSLP 5 50 2000 1020.54 0.00 5.73 0.00
SSLP 10 50 50 801.49 0.01 109.2 0.02

SSLP 10 50 100 * 0.10 218.42 0.02
SSLP 10 50 500 * 0.38 740.38 0.03

SSLP 10 50 1000 * 3.56 1615.42 0.02
SSLP 10 50 2000 * 18.59 2729.61 0.02

* 3600 second time limit
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Alternative Implementations

• Single (η) vs. multi-optimality cuts (ηω for each ω)

• Rounds of cuts in second stage

• Lexicography allows other structural cuts if known

• Can also implement more efficient cut generation that maintains fixed recourse and fixed
technology matrices

• Partial branch-and-cut for binary second-stage variables
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Summary - First Stage Binary, Second Stage Integer

• First computationally amenable incorporation of Gomory cuts into L-shaped decomposition
algorithm

• In each iteration, solve at most two LP subproblems (not IP’s to completion)

• Cost function vector, recourse & technology matrices and RHS are allowed to be random

• All alternative implementations with lex-dual simplex are finite

• One can now integrate alternative classes of cuts: Disjunctive, Gomory, structural
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First and Second Stages Integer [Zhang and K., 2014]

B = D = {1, 2},C = ∅

• Second-stage problem is similar as before

• Use a more sophisticated lifting function relying on Gomory cuts for the first-stage

• Finitely convergent, thanks to finite convergence of Gomory for deterministic pure integer
programs

How about mixed-integer variables? Gomory (or Gomory Mixed-Integer) pure cutting plane
method is no longer finitely convergent...
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Outline

1 Two-Stage Stochastic Integer Programming
Two-Stage Stochastic Linear Programming
Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming
Two-Stage Stochastic Pure Integer Programming
Two-Stage Stochastic Mixed-Integer Programming

2 Chance-Constrained Programming
Static Joint Chance-Constrained Programming
Two-stage (Dynamic) Chance-Constrained Programming
Distributionally Robust Chance-Constrained Programming
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Background: Deterministic 0-1 Mixed-Integer Linear Program (MILP)

minx∈X {cT x |X = {Ax ≥ b, x ∈ {0, 1}n1 × Rn−n1
+ }}.

• Let XL be the LP relaxation of X .

• P−(j , X̄ ) := {x ∈ X̄ |xj ≤ 0},
P+(j , X̄ ) := {x ∈ X̄ |xj ≥ 1},

• Hj (X̄ ) := clconv(P−(j , X̄ ) ∪ P+(j , X̄ )).

Theorem (Sequential convexification of 0-1 MILP [Balas, 1979])

clconv(X ) = Hn1 (Hn1−1(· · · (H1(XL)) · · · )).

Other finite characterizations: RLT [Sherali and Adams, 1990, 1994], SDP [Lovász and Schrijver,
1991], ...

[Carøe and Tind, 1998] and [Sen and Higle, 2005] adapt this convexification scheme for two-stage
stochastic mixed-binary optimization.
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How about general MILP?
Example of [Owen and Mehrotra, 2001]

x2

x1
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Convexification w.r.t x1
Example of [Owen and Mehrotra, 2001]

x2

x1
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Convexification w.r.t first x1, then x2 6= conv(X )!
Example of [Owen and Mehrotra, 2001]
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 53 / 133



Two-Stage Stochastic Integer Programming Two-Stage Stochastic Mixed-Integer Programming

Ad infinitum
Example of [Owen and Mehrotra, 2001]

x2

x1
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General MILP with bounded integer variables

minx∈X {cT x |X = {Ax ≥ b, x ∈ Zn1
+ × Rn−n1

+ }}.

• Assume that all integer variables are bounded: xj ∈ [0, uj ] for all j = 1, . . . , n1.

• One variable at a time convexification converges in the limit [Owen and Mehrotra, 2001]

• A disjunctive cutting plane algorithm using elementary disjunctions may not converge to the
integral optimal solution [Owen and Mehrotra, 2001].

• Binary expansion of bounded integer variables may not be effective in practice [Owen and
Mehrotra, 2002]

• [Adams and Sherali, 2005] give a finite RLT characterization using Lagrange interpolation
polynomials
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Questions

• Is there a finite disjunctive characterization of the convex hull of MILP solutions in the
original space of general integer variables?

• Is there a finitely convergent cutting plane algorithm for a general MILP (with no
assumptions on the integrality of the optimal objective)?
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General MILP

minx∈X {cT x |X = {Ax ≥ b, x ∈ Zn1
+ × Rn−n1

+ }}.

• Assume that all integer variables are bounded: xj ∈ [0, uj ] for all j = 1, . . . , n1.

• Let XL be the LP relaxation of X .

• Partition each interval [0, uj ] into tj sub-intervals [`1j := 0, u1j ], [`2j , u2j ], . . . , [`tj j , utj j := uj ]

• Given a partition P, the collection of all n1-tuples κ := (κ1, . . . , κn1 ), where κj ∈ {1, . . . , tj}
for j = 1, . . . , n1, is denoted by K(P).

• A unit partition, P∗, of all integer points is a partition for which uκj j − `κj j ≤ 1, for all
κj = 1, . . . , tj , and all j = 1, . . . , n1.
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A Finite Disjunctive Characterization for General MILP

For a given vector κ ∈ K(P∗), an index j , and a polyhedron X̄ , let

P−(κ, j , X̄ ) := {x ∈ X̄ |`κi i ≤ xi ≤ uκi i , i = 1, . . . , n1; xj ≤ `κj j},

P+(κ, j , X̄ ) := {x ∈ X̄ |`κi i ≤ xi ≤ uκi i , i = 1, . . . , n1; xj ≥ uκj j}.

Also let Hκj (X̄ ) := clconv(P−(κ, j , X̄ ) ∪ P+(κ, j , X̄ ) \ ∅)

Theorem (Sequential convexification of General MILP [Chen, K., and Sen, 2011])

Given a set X = {x ∈ Zn1
+ × Rn−n1

+ |Ax ≥ b}, X 6= ∅, with bounded integer variables, for any unit
partition P∗,

clconv(X ) = clconv{∪κ∈K(P∗)[Hκn1
(Hκn1−1(· · · (Hκ1 (XL)) · · · )) \ ∅]}.

Proof idea. The set K(P∗) decomposes the problem into boxes of at most unit size, each of
which can be sequentially convexified.
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 57 / 133



Two-Stage Stochastic Integer Programming Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)

A unit partition P∗ is given by xj ∈ {[0, 1], [1, 2], [2, 3]} for j = 1, 2, tj = 3 and κj ∈ {1, 2, 3} for
j = 1, 2.

K(P∗) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.

x2

x1

H(1,1)
2 (H(1,1)

1 (XL))

H(1,2)
2 (H(1,2)

1 (XL))

H(2,1)
2 (H(2,1)

1 (XL))
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How can we make this practical?
Unit partition contains exponentially many pieces.

Overview of the Cutting plane tree (CPT) algorithm

Given a fractional point x , find and add a violated disjunctive cut, re-solve LP.

• Add one valid cut at a time from “box” disjunctions (Qt ’s), using a cut generation LP
(CGLP)

• Obtain Qt ’s on-the-fly using a cutting plane tree

• CPT provides the memory needed for finite convergence.
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Example (cont.)
Cutting plane tree algorithm

x2

x1

x1

Q1 Q2
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Example (cont.)
Cutting plane tree algorithm

x2

x1

x1

Q1 Q2

cut 1

x2
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Example (cont.)
Cutting plane tree algorithm

x2

x1

x1

Q1 Q2

cut 1

x2

Q3
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Example (cont.)
Cutting plane tree algorithm

x2

x1

x1

Q1 Q2

cut 1

x2

Q3

cut 2
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Example (cont.)
CPT algorithm

Iteration 1.

• Solve LP relaxation: x1 = (15/8, 1).
1
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Example (cont.)
CPT algorithm

Iteration 1 (cont.)

• Create two branches in CPT: x1 ≤ 1 and
x1 ≥ 2

• Solve the CGLP based on the two
disjunctions (nodes 2&3) to generate a
violated cut:

11

12
x1 + x2 ≤

5

2

1

2 3

x1 ≤ 1 x1 ≥ 2
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Example (cont.)
CPT algorithm

Iteration 2.

• Solve LP relaxation: x2 = (2, 2/3).

• Search the current CPT to find where x2

falls. (Node 3)

1

2 3

x1 ≤ 1 x1 ≥ 2

Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 61 / 133



Two-Stage Stochastic Integer Programming Two-Stage Stochastic Mixed-Integer Programming

Example (cont.)
CPT algorithm

Iteration 2 (cont.)

• Create 2 branches for node 3: x2 ≤ 0 and
x2 ≥ 1, remove infeasible nodes (crossed).

• Solve the CGLP based on the 2
disjunctions (nodes 2&4) to generate a
violated cut:

x1 +
15

19
x2 ≤

9

4

1

2 3

x1 ≤ 1 x1 ≥ 2

x2 ≤ 0x2 ≥ 1

4
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Example (cont.)
CPT algorithm

Iteration 3.

• Solve LP relaxation: x3 = (1, 19/12).

• Search the current CPT to find where x3

falls. (Node 2)

1

2 3

x1 ≤ 1 x1 ≥ 2

x2 ≤ 0

4
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Example (cont.)
CPT algorithm

Iteration 3 (cont.)

• Create 2 branches for node 2: x2 ≤ 1 and
x2 ≥ 2.

• Solve the CGLP based on the 3
disjunctions (nodes 4,5&6) to generate a
violated cut:

x1 +
15

16
x2 ≤

9

4

1

2 3

x1 ≤ 1 x1 ≥ 2

x2 ≤ 0

4

x2 ≤ 1 x2 ≥ 2

5 6
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Example (cont.)
CPT algorithm

Iteration 7.

• Solve LP relaxation: x7 = (2, 0).

1

2 3

x1 ≤ 1 x1 ≥ 2

x2 ≤ 0

4

x2 ≤ 1 x2 ≥ 2

5 6

7

x1 ≤ 0

8

x1 ≤ 2

9

x2 ≤ 2
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Finite convergence of CPT

Theorem ([Chen, K., and Sen, 2011])

For a general MILP with bounded integer variables, the cutting plane tree algorithm converges to
an optimal solution in finitely many iterations.

Proof sketch.

• The number of possible leaf nodes is finite. In the worst case, we reach a unit partition, P∗.

• There are finitely many extreme points of the CGLP for clconv{∪Qt∈P∗ (Qt ∩ Xmσ )}

• A node σ is visited finitely many times.

• The unique path from the root node to each leaf node defines a κ ∈ K(P∗).

• Now use General MILP Sequential Convexification Theorem.

[Chen, K., Sen, 2012] tests CPT algorithm on (deterministic) MIPLIB instances
[Qi and Sen, 2017, 2021+] leverage the CPT algorithm for two-stage stochastic MIPs
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Discussion

• Successful adaptation of Benders-type approaches require

• finite convexification in second stage,

• tractable lifting of first-stage variables

• Extended formulations in second stage, e.g., [Kim and Mehrotra, 2015], [Bansal et al., 2018]

• Convex approximations, e.g., [Romeijnders et al., 2016], [van der Laan and Romeijnders,
2020+]

• Multi-stage stochastic MIP: SDDiP (JuMP) [Zou et al., 2019]

• Progressive hedging (Py-SP), e.g., [Rockafellar and Wets, 2004], [Watson et al., 2012],
[Gade et al., 2016]

• Two-stage stochastic mixed-integer nonlinear programs, e.g., [Mehrotra and Özevin, 2009],
[Li and Grossmann, 2018, 2019]
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Outline

1 Two-Stage Stochastic Integer Programming
Two-Stage Stochastic Linear Programming
Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming
Two-Stage Stochastic Pure Integer Programming
Two-Stage Stochastic Mixed-Integer Programming

2 Chance-Constrained Programming
Static Joint Chance-Constrained Programming
Two-stage (Dynamic) Chance-Constrained Programming
Distributionally Robust Chance-Constrained Programming
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Risk-Averse Optimization

Modeling risk/reliability/quality-of-service restrictions

• Rare events with dire consequences

• Not every realization of uncertain data may lead to a feasible solution

• Using risk-neutral models (expectations) do not capture the risk involved with low probability
events

• There exist multiple correlated risk criteria

• Supply chain disruptions, natural disasters, pandemic, etc.
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Risk Models and Challenges

• Quantitative risk models

• Models with (multivariate) conditional-value-at-risk (CVaR)

• Stochastic multi-objective optimization: Efficient frontier stochastic

• Qualitative risk models

• Models with joint chance-constraints

• Feasible region highly non-convex

• A large number of samples (scenarios) needed to represent uncertainty
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Preliminaries: Value-at-Risk (VaR)

Definition

For a univariate random variable X , with cumulative distribution function FX , the value-at-risk
(VaR) at confidence level (1− ε), also known as (1− ε)-quantile, is given by:

VaR1−ε(X ) = min{η : FX (η) ≥ 1− ε}. (1)

• From (1), for any x ∈ R, the inequalities VaR1−ε(X ) ≤ τ and P(X ≤ τ) ≥ 1− ε are
equivalent.

• In optimization context, the r.v. X is dependent on the decision vector x and uncertain
parameters ω

• In this context, a chance constraint on random variable X can be equivalently represented as
a constraint on its VaR.

• Here, larger values of X are considered risky (e.g., losses).
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Preliminaries: Conditional Value-at-Risk (CVaR)

Definition ([Rockafellar and Uryasev, 2000,2002])

The conditional value-at-risk (CVaR) at confidence level (1− ε) ∈ (0, 1] is given by

CVaR1−ε(X ) = min

{
η +

1

ε
E ([X − η]+) : η ∈ R

}
, (2)

where (a)+ := max{0, a}.

Here α = 1− ε.

Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 68 / 133



Chance-Constrained Programming

Preliminaries: Alternative Representations of CVaR

• Suppose X is a r.v. with realizations X1, . . . ,XN and probabilities p1, . . . , pN .

• The optimization problem in (2) can equivalently be formulated as the linear program (LP):

min

η +
1

ε

∑
i∈[N]

piwi : wi ≥ Xi − η, ∀ i ∈ [N], w ∈ RN
+

 . (3)

• Let ρ denote an ordering of the realizations such that Xρ1 ≤ Xρ2 ≤ · · · ≤ XρN . Then, for a
given confidence level ε ∈ (0, 1] we have

VaR1−ε(X ) = Xρq , where q = min

j ∈ [N] :
∑
i∈[j]

pρi ≥ 1− ε

 . (4)

• CVaR provides a tractable approximation to an individual VaR constraint. (Replace
VaR1−ε(X ) ≤ τ with CVaR1−ε(X ) ≤ τ .)

• How about the multivariate case? [Prékopa, 1990], [K. and Noyan, 2016], [Meraklı and K.,
2018]
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Outline
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Static Joint chance-constrained program (CCP)

• A linear joint chance-constrained program (CCP) with right-hand-side uncertainty is an
optimization problem of the following form:

min
{
c>x : P [Ax ≥ b(ω)] ≥ 1− ε, x ∈ X

}
(CCP)

where
• (Ω,F, P) is a probability space,

• X is a (polyhedral) domain,

• ε ∈ (0, 1) is a risk level, and

• b(ω) is the random right-hand-side vector that depends on the random variable ω ∈ Ω.

• Dates back to [Charnes et al., 1958], [Charnes and Cooper, 1959, 1963] (individual chance
constraints), and [Miller and Wagner, 1965], [Prékopa,1973] (joint chance constraints)

• Used in modeling problems with “random supplies/demands”.

• Why can’t we handle P[f (x , ξ) ≥ 0] ≥ 1− ε directly?
• Non-convex unless certain restrictive assumptions, e.g., [Prékopa, 1990], [Sen, 1992], [Dentcheva et

al., 2000]
• Evaluating P[f (x, ξ) ≥ 0] is difficult (multidimensional integration).
• In practice, P is often unknown. (We’ll address this later.)
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Non-convex feasible region example adapted from [Sen, 1992]

min x1 + x2

s.t. P
{

2x1 − x2 ≥ ω1

x1 + 2x2 ≥ ω2

}
≥ 0.6

x ≥ 0,

with joint probability density function of ω
Scenario 1 2 3 4 5 6 7 8 9
ω1 0.75 0.5 0.5 0.25 0.25 0.25 0 0 0
ω2 1.25 1.5 1.25 1.75 1.5 1.25 2 1.5 1.25

Probability 0.2 0.14 0.06 0.06 0.06 0.3 0.04 0.04 0.1

ω

ω2 = 2

ω2 = 1.5

ω 1
=

0.2
5

ω 1
=

0.7
5

ω 1
=

0.5
x2

x1

ω2 = 1.25

Figure 1: The feasible region of the example CCP.

1.2 Preliminaries

We next present two relevant definitions pertaining to the risk associated with a univariate random variable that

will be used in our discussion. We refer the reader to [176, 177, 192] for a more detailed treatment of these risk

measures.

Definition 1. For a univariate random variable X , with cumulative distribution function FX , the value-at-risk (VaR)

at confidence level (1− ε), also known as (1− ε)-quantile, is given by:

VaR1−ε(X) = min{η : FX(η) ≥ 1− ε}. (3)

�

It follows from (3) that, for any x ∈ R, the inequalities VaR1−ε(X) ≤ x and P(X ≤ x) ≥ 1 − ε are equivalent.

That is, a chance constraint on random variable X can be equivalently represented as a constraint on its VaR.

Definition 2 ([193, 194]). The conditional value-at-risk (CVaR) at confidence level (1− ε) ∈ (0, 1] is given by

CVaR1−ε(X) = min
{
η + 1

ε
E ([X − η]+) : η ∈ R

}
, (4)

where (a)+ := max{0, a}. �

It is well known that the minimum in definition (4) is attained at the VaR at confidence level (1 − ε). CVaR,

introduced by Rockafellar and Uryasev [193], satisfies the axioms of coherent risk measures, such as law invariance

and sub-additivity, as defined in [9]. It has other desirable properties, such as tractability—for finite distributions,

CVaR can be formulated as a linear program and embedded in an optimization model [192]. More precisely, suppose

X is a random variable with realizations X1, . . . , XN and corresponding probabilities p1, . . . , pN . Throughout,

for a ∈ Z+, let [a] := {1, . . . , a}. The optimization problem in (4) can equivalently be formulated as the linear

program (LP):

min



η + 1

ε

∑

i∈[N ]

piwi : wi ≥ Xi − η, ∀ i ∈ [N ], w ∈ RN+



 . (5)

4
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Finite sample space assumption

• We consider the setting where Ω is a finite sample space:

Ω = {ω1, . . . , ωN}

• Even if Ω is not finite, we can approximate (CCP) via an empirical distribution (see the
theory of Sample Average Approximation (SAA), e.g., [Luedtke and Ahmed, 2008], [Calafiore
and Campi, 2005, 2006]).

• Assuming that P
[
ω = ωi

]
= pi for i ∈ [N],

min
{
c>x : P [Ax ≥ b(ω)] ≥ 1− ε, x ∈ X

}
(CCP)

can be rewritten as

min

c>x :
∑
i∈[N]

pi1
[
Ax ≥ b(ωi )

]
≥ 1− ε, x ∈ X

 .

• Also known as (ML) empirical risk, (stats) Monte Carlo.
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 73 / 133



Chance-Constrained Programming Static Joint Chance-Constrained Programming

Finite sample space assumption

• We consider the setting where Ω is a finite sample space:

Ω = {ω1, . . . , ωN}

• Even if Ω is not finite, we can approximate (CCP) via an empirical distribution (see the
theory of Sample Average Approximation (SAA), e.g., [Luedtke and Ahmed, 2008], [Calafiore
and Campi, 2005, 2006]).

• Assuming that P
[
ω = ωi

]
= pi for i ∈ [N],

min
{
c>x : P [Ax ≥ b(ω)] ≥ 1− ε, x ∈ X

}
(CCP)

can be rewritten as

min

c>x :
∑
i∈[N]

pi1
[
Ax ≥ b(ωi )

]
≥ 1− ε, x ∈ X

 .

• Also known as (ML) empirical risk, (stats) Monte Carlo.
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Reformulation

• There is a deterministic reformulation: the problem can be reformulated as the following
mixed-integer program [Ruszczyński, 2001],

min c>x

s.t. Ax = y ,

y ≥ b(ωi )(1− zi ), ∀i ∈ [N],∑
i∈[N]

pi (1− zi ) ≥ 1− ε,

x ∈ X , y ∈ Rk
+, z ∈ {0, 1}N ,

where
• we assume that Ax ≥ 0 holds for all x ∈ X ,

• b(ωi ) ≥ 0 for all i , i.e., Ax ≥ 0 is satisfied for all x ∈ X ,

• 1− zi ' 1

[
Ax ≥ b(ωi )

]
:

Ax ≥ b(ωi ) if zi = 0 and Ax ≥ 0 if zi = 1.
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Big-M Reformulation

The problem can be reformulated as the following mixed-integer program:

min c>x

s.t. Ax = y ,

yj ≥ wij (1− zi ), ∀i ∈ [N], ∀j ∈ [k], (big-M)∑
i∈[N]

pizi ≤ ε, (knapsack)

x ∈ X , y ∈ Rk
+, z ∈ {0, 1}N ,

where W =
{
wij

}
∈ RN×k

+ is a nonnegative matrix.
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Difficulties

• The MIP formulation is often difficult to solve.

• In fact, its LP relaxation is weak:

min c>x

s.t. Ax = y ,

yj ≥ wij (1− zi ), ∀i ∈ [N], ∀j ∈ [k], (big-M)∑
i∈[N]

pizi ≤ ε, (knapsack)

x ∈ X , y ∈ Rk
+, z ∈ [0, 1]N .

• We will strengthen the formulation by integer programming techniques.
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Known substructures

• We refer to the set{
(y , z) ∈ Rk

+ × {0, 1}N : yj ≥ wij (1− zi ), ∀i ∈ [N], ∀j ∈ [k]
}

(Mix)

as a (joint) mixing set (term coined by [Günlük and Pochet, 2001] for related set with
general integer variables).

• One can obtain the convex hull of (Mix) by adding the so-called mixing (or star) inequalities
[Atamtürk, Nemhauser, Savelsbergh, 2000].

• We call the set (y , z) ∈ (Mix) :
∑
i∈[N]

pizi ≤ ε

 (Mix-knapsack)

as a (joint) mixing set with a knapsack constraint.

• Valid inequalities for (Mix-knapsack) are given in [Luedtke, Ahmed, Nemhauser, 2010], [K.,
2012], [Abdi and Fukasawa, 2016], [Zhao, Huang, Zeng, 2017].

• Random technology matrix and right-hand-side extensions [Tanner and Ntaimo, 2010],
[Luedtke, 2014]

• It is harder to convexify (Mix-knapsack) due to the knapsack structure.
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as a (joint) mixing set (term coined by [Günlük and Pochet, 2001] for related set with
general integer variables).

• One can obtain the convex hull of (Mix) by adding the so-called mixing (or star) inequalities
[Atamtürk, Nemhauser, Savelsbergh, 2000].

• We call the set (y , z) ∈ (Mix) :
∑
i∈[N]

pizi ≤ ε

 (Mix-knapsack)

as a (joint) mixing set with a knapsack constraint.

• Valid inequalities for (Mix-knapsack) are given in [Luedtke, Ahmed, Nemhauser, 2010], [K.,
2012], [Abdi and Fukasawa, 2016], [Zhao, Huang, Zeng, 2017].

• Random technology matrix and right-hand-side extensions [Tanner and Ntaimo, 2010],
[Luedtke, 2014]

• It is harder to convexify (Mix-knapsack) due to the knapsack structure.
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Binary mixing (star) inequalities

• The basic mixing set for given j ∈ [k]:{
(yj , z) ∈ R× {0, 1}N : yj ≥ wij (1− zi ), ∀i ∈ [N]

}

• The mixing inequality for a given subset Πj = {j1, . . . , jτ} with wj1j ≥ · · · ≥ wjτ j is:

yj +
∑
s∈[τ ]

(wjs j − wjs+1j )zjs ≥ wj1j

where wjτ+1j := 0.

• For example, the convex hull of (y1, z) ∈ R+ × {0, 1}3 :
y1 ≥ 8(1− z1)
y1 ≥ 6(1− z2)
y1 ≥ 13(1− z3)


is  (y1, z) ∈ R+ × [0, 1]3 :

y1 ≥ 13− 6z2 − 7z3

y1 ≥ 13− 13z3

y1 ≥ 13− 8z1 − 5z3

y1 ≥ 13− 2z1 − 6z2 − 5z3


=
{

(y1, z) ∈ R+ × [0, 1]3 : the mixing inequalities for y1

}
.
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 78 / 133



Chance-Constrained Programming Static Joint Chance-Constrained Programming

Binary mixing (star) inequalities

• The basic mixing set for given j ∈ [k]:{
(yj , z) ∈ R× {0, 1}N : yj ≥ wij (1− zi ), ∀i ∈ [N]

}
• The mixing inequality for a given subset Πj = {j1, . . . , jτ} with wj1j ≥ · · · ≥ wjτ j is:

yj +
∑
s∈[τ ]

(wjs j − wjs+1j )zjs ≥ wj1j

where wjτ+1j := 0.

• For example, the convex hull of (y1, z) ∈ R+ × {0, 1}3 :
y1 ≥ 8(1− z1)
y1 ≥ 6(1− z2)
y1 ≥ 13(1− z3)


is  (y1, z) ∈ R+ × [0, 1]3 :

y1 ≥ 13− 6z2 − 7z3

y1 ≥ 13− 13z3

y1 ≥ 13− 8z1 − 5z3

y1 ≥ 13− 2z1 − 6z2 − 5z3


=
{

(y1, z) ∈ R+ × [0, 1]3 : the mixing inequalities for y1

}
.

Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 78 / 133



Chance-Constrained Programming Static Joint Chance-Constrained Programming

How about the knapsack constraint?

• Typically, pi = 1
N

due to i.i.d. sampling

• In this case, the knapsack constraint is a cardinality constraint:∑
i∈[N]

zi ≤ bNεc =: q

• Suppose w1j ≥ · · · ≥ wNj , then we must have

yj ≥ w(q+1)j

• Use this to strengthen the formulation as(yj , z) ∈ R× {0, 1}N : yj + (wij − w(q+1)j )zi ≥ wij , ∀i ∈ [q],
∑
i∈[N]

zi ≤ q


• Apply mixing inequalities to the strengthened formulation [Luedtke et al., 2010].
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Quantile cuts

• We can exploit the knapsack structure “indirectly” by the quantile cuts [Luedtke, 2014], [Xie
and Ahmed, 2018].

• A quantile cut is of the following form: for some h ∈ Rk
+,

h>y ≥ min
{
h>y : (y , z) ∈ (Mix-knapsack)

}
.

• Quantile cuts are valid for (Mix-knapsack), and thus, for the formulation.

• We replace/relax the knapsack constraint by the quantile cut

y1 + · · ·+ yk ≥ ε
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Mixing set with lower bounds

• Consider the set (y , z) :

yj ≥ wij (1− zi ), ∀i ∈ [N], ∀j ∈ [k],

y1 + · · ·+ yk ≥ ε,

y ∈ Rk
+, z ∈ {0, 1}N

 (Mix-lb)

referred to as a (joint) mixing set with lower bounds.

• Our goal is to understand the polyhedral structure of (Mix-lb) to generate strong valid
inequalities.
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Example 1

• The convex hull of (y , z) ∈ R2
+ × {0, 1}3 :

y1 ≥ 8(1− z1)
y1 ≥ 6(1− z2)
y1 ≥ 13(1− z3)

,
y2 ≥ 3(1− z1)
y2 ≥ 4(1− z2)
y2 ≥ 2(1− z3)


is  (y , z) ∈ R2

+ × [0, 1]3 :

y1 ≥ 13− 6z2 − 7z3

y1 ≥ 13− 13z3

y1 ≥ 13− 8z1 − 5z3

y1 ≥ 13− 2z1 − 6z2 − 5z3

,

y2 ≥ 4− z1 − z2 − 2z3

y2 ≥ 4− 2z2 − 2z3

y2 ≥ 4− 3z1 − z2

y2 ≥ 4− 4z2


=
{

(y , z) ∈ R2
+ × [0, 1]3 : the mixing inequalities for y1, y2

}
.

• This was shown by [Atamtürk, Nemhauser, Savelsbergh ’00].
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Example 2

The convex hull of
(y , z) ∈
R2

+ × {0, 1}3 :

y1 ≥ 8(1− z1)
y1 ≥ 6(1− z2)
y1 ≥ 13(1− z3)
y1 ≥ (1− z4)
y1 ≥ 4(1− z5)

,

y2 ≥ 3(1− z1)
y2 ≥ 4(1− z2)
y2 ≥ 2(1− z3)
y2 ≥ 2(1− z4)
y2 ≥ (1− z5)

, y1 + y2 ≥ 7


is


(y , z) ∈
R2

+ × [0, 1]3 :

the mixing inequalities for y1, y2

y1 + y2 ≥ 17− z1 − z2 − 8z3

y1 + y2 ≥ 17− 2z2 − 8z3

y1 + y2 ≥ 17− 3z2 − 7z3

y1 + y2 ≥ 17− 2z1 − 3z2 − 5z3

y1 + y2 ≥ 17− 4z1 − z2 − 5z3


=

{
(y , z) ∈
R2

+ × [0, 1]3 :
the mixing inequalities for y1, y2

the “aggregated” mixing inequalities for “y1 + y2”

}
Are the mixing and the aggregated mixing inequalities enough to describe the convex hull of
(Mix-lb)?
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(y , z) ∈
R2

+ × [0, 1]3 :
the mixing inequalities for y1, y2

the “aggregated” mixing inequalities for “y1 + y2”

}

Are the mixing and the aggregated mixing inequalities enough to describe the convex hull of
(Mix-lb)?
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Example 4

• The convex hull of
(y , z) ∈
R2

+ × {0, 1}3 :

y1 ≥ 8(1− z1)
y1 ≥ 6(1− z2)
y1 ≥ 13(1− z3)
y1 ≥ (1− z4)
y1 ≥ 4(1− z5)
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the mixing inequalities for y1, y2
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y1 + 2y2 ≥ 21− 2z2 − 9z3 − 2z4 − z5
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Chance-Constrained Programming Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets

• When are the mixing and the aggregated mixing inequalities sufficient?

• We discover an underlying submodularity in (Mix-lb)!

• A function f ∈ {0, 1}N → R is submodular if

f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B) ∀A,B ⊆ [N].

• Alternatively, a function f ∈ {0, 1}N → R is submodular if

f (X ∪ {i})− f (X ) ≥ f (Y ∪ {i})− f (Y ) ∀X ⊂ Y ⊆ [N], i 6∈ Y .
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 86 / 133



Chance-Constrained Programming Static Joint Chance-Constrained Programming

Submodularity in joint mixing sets

• When are the mixing and the aggregated mixing inequalities sufficient?

• We discover an underlying submodularity in (Mix-lb)!

• A function f ∈ {0, 1}N → R is submodular if

f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B) ∀A,B ⊆ [N].

• Alternatively, a function f ∈ {0, 1}N → R is submodular if

f (X ∪ {i})− f (X ) ≥ f (Y ∪ {i})− f (Y ) ∀X ⊂ Y ⊆ [N], i 6∈ Y .
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Submodularity in joint mixing sets

• (Mix) can be written as{
(y , z) : yj ≥ max

i∈[N]

{
wij (1− zi )

}
, ∀j ∈ [k]

}
=
{

(y , z) : yj ≥ fj (1− z), ∀j ∈ [k]
}

where
fj (z) = max

i∈[N]

{
wijzi

}
for z ∈ {0, 1}N .

Remark

Each fj is a submodular function:

max
i∈A

{
wij

}
+ max

i∈B

{
wij

}
≥ max

i∈A∪B

{
wij

}
+ max

i∈A∩B

{
wij

}
for any A,B ⊆ [N].
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Chance-Constrained Programming Static Joint Chance-Constrained Programming

Submodularity and polymatroid inequalities

• Given a submodular (set) function f : 2[N] → R, the extended polymatroid of f is

EPf := {π ∈ Rn : π(V ) ≤ f (V ), ∀V ⊆ [N]} .

• Given a submodular function f : {0, 1}N → R, consider

Qf :=
{

(y , z) ∈ R× {0, 1}N : y ≥ f (1− z)
}

Theorem [Lovász, 1983, Atamtürk and Narayanan 2008]

The convex hull of Qf is given by{
(y , z) ∈ R× [0, 1]N : y ≥ π>(1− z) + f (∅), ∀π ∈ EPf−f (∅)

}
.

Theorem [Edmonds, 1970]

Let f : {0, 1}n → R be a submodular function. Then π ∈ Rn is an extreme point of EPf if and
only if there exists a permutation σ of [N] such that πσ(t) = f (Vt)− f (Vt−1), where
Vt = {σ(1), . . . , σ(t)} for t ∈ [N] and V0 = ∅.

• The inequalities y ≥ π>(1− z) + f (∅) for π ∈ EPf−f (∅) are referred to as the polymatroid
inequalities of f .

• Separating the polymatroid inequalities can be done in O(N log N) time.
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Example 1 (revisited)

• The convex hull of  (y1, z) ∈ R+ × {0, 1}3 :
y1 ≥ 8(1− z1)
y1 ≥ 6(1− z2)
y1 ≥ 13(1− z3)

 ,

is  (y1, z) ∈ R+ × [0, 1]3 :

y1 ≥ 13− 6z2 − 7z3

y1 ≥ 13− 13z3

y1 ≥ 13− 8z1 − 5z3

y1 ≥ 13− 2z1 − 6z2 − 5z3

,


=
{

(y1, z) ∈ R+ × [0, 1]3 : the mixing inequalities for y1

}
.

• Consider σ = {2, 3, 1}.
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 89 / 133



Chance-Constrained Programming Static Joint Chance-Constrained Programming

Joint mixing sets and mixing inequalities

• Recall the basic mixing set:{
(y , z) ∈ R× {0, 1}N : yj ≥ fj (1− z), ∀j ∈ [k]

}
where

fj (z) = max
i∈[N]

{
wijzi

}
for z ∈ {0, 1}N .

• The mixing inequality from a subset Πj = {j1, · · · , jτ} with wj1j ≥ · · · ≥ wjτ j is:

yj +
∑
s∈[τ ]

(wjs j − wjs+1j )zjs ≥ wj1j

where wjτ+1j := 0.

Theorem [Kılınç-Karzan, Küçükyavuz, Lee, 2019+]

The polymatroid inequalities of fj of the form

yj ≥ π>(1− z) + fj (∅) for π ∈ EPfj−fj (∅)

are mixing inequalities.
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The polymatroid inequalities of fj of the form

yj ≥ π>(1− z) + fj (∅) for π ∈ EPfj−fj (∅)

are mixing inequalities.
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Chance-Constrained Programming Static Joint Chance-Constrained Programming

Multiple submodular constraints

Theorem [Baumann et al., 2013]

Given submodular functions f1, . . . , fk : {0, 1}N → R, the convex hull of{
(y , z) ∈ Rk × {0, 1}N : yj ≥ fj (1− z), ∀j ∈ [k]

}
is given by

{
(y , z) ∈ Rk × [0, 1]N : yj ≥ π>(1− z) + fj (∅), ∀π ∈ EPfj−fj (∅), ∀j ∈ [k]

}
.

Theorem [Kılınç-Karzan, K., Lee, 2019+]

Let f1, . . . , f` : {0, 1}N → R be submodular. If h1, . . . , h` ∈ Rk are weakly independent, then{
(y , z) ∈ Rk × {0, 1}N : h>j y ≥ fj (1− z), ∀j ∈ [`]

}
is given by{

(y , z) ∈ Rk × [0, 1]N : h>j y ≥ π>(1− z) + fj (∅), ∀π ∈ EPfj−fj (∅), ∀j ∈ [`]
}
.
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Theorem [Kılınç-Karzan, K., Lee, 2019+]

Let f1, . . . , f` : {0, 1}N → R be submodular. If h1, . . . , h` ∈ Rk are weakly independent, then{
(y , z) ∈ Rk × {0, 1}N : h>j y ≥ fj (1− z), ∀j ∈ [`]

}
is given by

{
(y , z) ∈ Rk × [0, 1]N : h>j y ≥ π>(1− z) + fj (∅), ∀π ∈ EPfj−fj (∅), ∀j ∈ [`]

}
.
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Submodularity in joint mixing sets with lower bounds

• Now consider (Mix-lb):

{(y , z) ∈ (Mix) : y1 + · · ·+ yk ≥ ε} .

• Then (Mix-lb) can be written as{
(y , z) : yj ≥ fj (1− z), ∀j ∈ [k], y1 + · · ·+ yk ≥ g(1− z)

}
where

fj (z) = max
i∈[N]

{
wijzi

}
, g(z) = max

ε, ∑
j∈[k]

fj (z)

 for z ∈ {0, 1}N .

• In contrast to fj , the function g is not always submodular.

• Can we characterize when g is submodular?
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Submodularity in joint mixing sets with lower bounds

• Let Ī (ε) ⊆ [N] be a collection of scenarios defined as follows:

Ī (ε) :=

i ∈ [N] :
∑
j∈[k]

wij ≤ ε



• Ī (ε) collects a set of scenarios with small coefficients.

• In Example 1, Ī (ε) = {4, 5}.
(y , z) ∈
R2

+ × {0, 1}3 :

y1 ≥ 8(1− z1)
y1 ≥ 6(1− z2)
y1 ≥ 13(1− z3)
y1 ≥ (1− z4)
y1 ≥ 4(1− z5)

,

y2 ≥ 3(1− z1)
y2 ≥ 4(1− z2)
y2 ≥ 2(1− z3)
y2 ≥ 2(1− z4)
y2 ≥ (1− z5)

, y1 + y2 ≥ 7
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Submodularity in joint mixing sets with lower bounds

• We say that Ī (ε) is ε-negligible if Ī (ε) = ∅

or Ī (ε) 6= ∅ and Ī (ε) satisfies
(1)

∑
j∈[k]

max
i∈Ī (ε)

{wij} ≤ ε,

(2) max
i∈Ī (ε)

{wij} ≤ wij for every i ∈ [N] \ Ī (ε) and j ∈ [k].

Theorem [Kılınç-Karzan, K., Lee, 2019+]

g is submodular if and only if ε satisfies

1. Ī (ε) is ε-negligible,

2. ε ≤ LW (ε) :=

 min
p,q∈[N]\Ī (ε)

{∑
j∈[k]

min {wpj , wqj}
}
, if Ī (ε) 6= [N],

+∞, if Ī (ε) = [N]

.

• Now we know when (Mix-lb) has a submodularity structure.
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Theorem [Kılınç-Karzan, K., Lee, 2019+]

g is submodular if and only if ε satisfies
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Aggregated mixing inequalities

• (Mix-lb) can be written as{
(y , z) : yj ≥ fj (1− z), ∀j ∈ [k], y1 + · · ·+ yk ≥ g(1− z)

}
where

fj (z) = max
i∈[N]

{
wijzi

}
, g(z) = max

ε, ∑
j∈[k]

fj (z)

 for z ∈ {0, 1}N .

Theorem [Kılınç-Karzan, K., Lee, 2019+]

The polymatroid inequalities of g of the form

y1 + · · ·+ yk ≥ π>(1− z) + g(∅) for π ∈ EPg−g(∅)

are aggregated mixing inequalities. They can be separated in O(kN log N) time.
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Example 2 (revisited)

The convex hull of
(y , z) ∈
R2

+ × {0, 1}3 :

y1 ≥ 8(1− z1)
y1 ≥ 6(1− z2)
y1 ≥ 13(1− z3)
y1 ≥ (1− z4)
y1 ≥ 4(1− z5)

,

y2 ≥ 3(1− z1)
y2 ≥ 4(1− z2)
y2 ≥ 2(1− z3)
y2 ≥ 2(1− z4)
y2 ≥ (1− z5)

, y1 + y2 ≥ 7


is 

(y , z) ∈
R2

+ × [0, 1]3 :

the mixing inequalities for y1, y2

y1 + y2 ≥ 17− z1 − z2 − 8z3

y1 + y2 ≥ 17− 2z2 − 8z3

y1 + y2 ≥ 17− 3z2 − 7z3

y1 + y2 ≥ 17− 2z1 − 3z2 − 5z3

y1 + y2 ≥ 17− 4z1 − z2 − 5z3


=

{
(y , z) ∈
R2

+ × [0, 1]3 :
the mixing inequalities for y1, y2

the “aggregated” mixing inequalities for “y1 + y2”

}

Consider σ = {2, 3, 1, 4, 5}.
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Convex hull of (Mix-lb)

Theorem [Kılınç-Karzan, K., Lee, 2019+]

The following statements are equivalent:

(i) the convex hull of (Mix-lb) is obtained after adding the mixing and the aggregated mixing
inequalities,

(ii) f1, . . . , fk , g are submodular.

(iii) ε satisfies the following 2 conditions:

1. Ī (ε) is ε-negligible,

2. ε ≤ LW (ε) :=

 min
p,q∈[N]\Ī (ε)

{∑
j∈[k]

min {wpj , wqj}
}
, if Ī (ε) 6= [N],

+∞, if Ī (ε) = [N]

.
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Outline

1 Two-Stage Stochastic Integer Programming
Two-Stage Stochastic Linear Programming
Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming
Two-Stage Stochastic Pure Integer Programming
Two-Stage Stochastic Mixed-Integer Programming

2 Chance-Constrained Programming
Static Joint Chance-Constrained Programming
Two-stage (Dynamic) Chance-Constrained Programming
Distributionally Robust Chance-Constrained Programming
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Two-stage (dynamic) chance-constrained problem (2CCP)

• Order of events:

x → ω → y(ω)

• y(ω) ∈ Rn2
+ : second-stage decision vector for each ω ∈ Ω

A two-stage chance-constrained program:

min c>x + Eω(g(ω)>y(ω))

s.t. P{W (ω)x + T (ω)y(ω) ≥ r(ω)} ≥ 1− ε
x ∈ X ∩ X , y(ω) ∈ Rn2

+ , ω ∈ Ω.

• Assume (wlog) i.i.d sample (P(ω) = 1
N

) and g(ω) ≥ 0.
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 99 / 133



Chance-Constrained Programming Two-stage (Dynamic) Chance-Constrained Programming

Two-stage (dynamic) chance-constrained problem (2CCP)

• Order of events: x → ω

→ y(ω)

• y(ω) ∈ Rn2
+ : second-stage decision vector for each ω ∈ Ω

A two-stage chance-constrained program:

min c>x + Eω(g(ω)>y(ω))

s.t. P{W (ω)x + T (ω)y(ω) ≥ r(ω)} ≥ 1− ε
x ∈ X ∩ X , y(ω) ∈ Rn2

+ , ω ∈ Ω.

• Assume (wlog) i.i.d sample (P(ω) = 1
N

) and g(ω) ≥ 0.
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Static vs Dynamic Decisions

Multi-stage inventory control problem with a service level constraint [Zhang, K., Goel, 2014]

Service level

Costs($)

Dynamic Model

Static Model

10750

11000

12250

0.5

10875

11125

12375

12125

0.6 0.7 0.90.8 1.0

11250

10625

10500

• Significant cost savings by dynamic model.

• Higher service level gives rise to higher cost.

• Static model: limited flexibility

Dynamic model: large cost savings with
small decrease in service level
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Deterministic Equivalent Formulation (DEF)

min
x,y,z

c>x +
1

N
(g(ω1)>y(ω1)z1 + g(ω2)>y(ω2)z2 . . . + g(ωN )>y(ωN )zN )

T (ω1)x +W (ω1)y(ω1) +M̄1z1 ≥ r(ω1)

T (ω2)x + W (ω2)y(ω2) +M̄2z2 ≥ r(ω2)

.

.

.
. . .

.

.

.

T (ωN )x + W (ωN )y(ωN ) +M̄NzN ≥ r(ωN )

N∑
k=1

zk ≤ bNεc = p; x ∈ X ∩ X , y(ω) ∈ Rn2
+ , ω ∈ Ω, z ∈ BN

,

where M̄i is a vector of very large numbers, ωi ∈ Ω, and

zi =

{
0 if scenario ωi is satisfied
1 otherwise.

Let g(ωi ) = gi ,T (ωi ) = Ti ,W (ωi ) = Wi , r(ω1) = ri .
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Chance-Constrained Programming Two-stage (Dynamic) Chance-Constrained Programming

Decomposition algorithm for 2CCP

If there are second stage costs, and only a subset of scenarios are satisfied, then the traditional
Benders feasibility and optimality cuts are no longer valid.

Goal: Develop valid feasibility and optimality cuts to the master problem of 2CCP.

• First, the algorithm requires solving a master problem (MP):

MP(C ,B) = min
x,z,η

c>x +
1

N

∑
i∈[N]

ηi

s.t.
∑
i∈[N]

zi ≤ q

z ∈ BN

x ∈ X ∩ X , η ∈ RN
+

(x , z) ∈ F , (x , z, η) ∈ O,

• F represents the collection of feasibility cuts and

• O represents the collection of optimality cuts.

• Let Pi = {x ∈ X ∩ X|∃y ≥ 0 : Tix + Wiy ≥ ri}, i ∈ [N].
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Benders feasibility and optimality cuts are no longer valid.

Goal: Develop valid feasibility and optimality cuts to the master problem of 2CCP.

• First, the algorithm requires solving a master problem (MP):

MP(C ,B) = min
x,z,η

c>x +
1

N

∑
i∈[N]

ηi

s.t.
∑
i∈[N]

zi ≤ q

z ∈ BN

x ∈ X ∩ X , η ∈ RN
+

(x , z) ∈ F , (x , z, η) ∈ O,

• F represents the collection of feasibility cuts and

• O represents the collection of optimality cuts.

• Let Pi = {x ∈ X ∩ X|∃y ≥ 0 : Tix + Wiy ≥ ri}, i ∈ [N].
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Subproblem 1 (SP1): Optimality Cut Generation (Basic)

• SP1 is used to cut off a feasible solution (x̂ , ẑ) which has incorrect second stage value η̂.

• If the solution (x̂ , ẑ) is feasible, then ∀ẑi = 0, we solve single scenario linear optimization
problem (SP1i ):

Yi = min
y∈Rn2

+

g>i y

s.t. Wiy ≥ ri − Ti x̂ (ψi )

where ψi is the vector of dual variables for kth scenario subproblem.

• If SP1i is feasible, then compare η̂i with Yi . If η̂i < Yi , then add the modified Benders
optimality cut to O:

ηi + Mizω ≥ ψ>i (ri − Tix)

Mi : big-M

• If SP1i (or equivalently (x̂ , ẑ)) is infeasible, then go to the second subproblem (feasibility cut
generation). [Luedtke, 2014]
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Computations

A call center staffing problem

Instances DEF Basic Decomposition
(N, ε) (n1, d) Time (slvd) Gap(%) Time (slvd) Gap(%)

(300, 0.05)
(5,10) 55.8 (5) 0 54.6 (5) 0

(10,20) 258.3 (4) 0.1 134.2 (5) 0

(300, 0.1)
(5,10) 126.0 (5) 0 258.3 (4) 0.1

(10,20) 1294.7 (4) 1.3 483.7 (3) 0.3

(400, 0.05)
(5,10) 83.6 (5) 0 133.8 (5) 0

(10,20) 781(3) 2.3 233.2 (5) 0

(400, 0.1)
(5,10) 243 (5) 0 220 (3) 0.0

(10,20) >3600 (0) 3.4 909.8 (5) 0

(500, 0.05)
(5,10) 170.6 (5) 0 221(5) 0

(10,20) >3600 (0) 2.9 313.2(5) 0

(500, 0.1)
(5,10) 730 (2) 1.3 166 (3) 0.3

(10,20) >3600 (0) 5.8 142.7 (3) 0.3
Avg (Sum) (n,m) 916.2 (38) 3.2 276.1 (51) 0.2

n1: number of first stage variables (servers); d : number of customers.
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Improved optimality cuts [Liu, K., Luedtke, 2016]

• For a given α ∈ Rn1 and each i ∈ [N], let

vi (α) = min{α>x : x ∈ Pi}

• Note vi (α) ≤ α>x for all feasible x

• Then an improved optimality cut with φ = ψ>i Ti is:

ηi +
(
ψ>i ri − vi (φ)

)
zi ≥ ψ>i (ri − Tix).

For zi = 0, this is the traditional Benders cut, so it is valid.

For zi = 1, we get ηi︸︷︷︸
≥0

≥ vi (φ)− φx︸ ︷︷ ︸
≤0

, so it is valid.

• We also give another class of strong optimality cuts
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Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 105 / 133



Chance-Constrained Programming Two-stage (Dynamic) Chance-Constrained Programming

Computational results with strong decomposition

Instances DEF Basic Decomp. Strong Decomp.
(N, ε) (n1, d) Time(slvd) / gap Time / gap Time(slvd) / gap

(2000, 0.05)
(5,10) 120 1.8% 133

(10,20) 9.0% 1.8% 1012
(15,30) 14.6% 3.8% 343

(2500, 0.05)
(5,10) 165(2) / 6.5% 3.0% 131

(10,20) 9.5% 2.8% 1246
(15,30) – 3.3% 1246

(3000, 0.05)
(5,10) 262(1) / 5.9% 1.8% 273

(10,20) 17.4% 2.2% 2030
(15,30) – 3.2% 1207(2) / 0.4%

• “ -” : failed to find solution.

• If the algorithm hits the time or memory limit, we report the end gap, otherwise we report
time.

• For DEP (3000,0.05) (5,10), CPLEX successfully solved 1 instance in 262 seconds, and failed
to solve the other 2 instances, with 5.9% end gap.
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Do we really know P?

• So far we discussed two-stage stochastic MIPs and chance-constrained programs with a
given (finite) P.

• Do we really know P?
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Outline

1 Two-Stage Stochastic Integer Programming
Two-Stage Stochastic Linear Programming
Classification Scheme for Two-Stage Stochastic Mixed-Integer Programming
Two-Stage Stochastic Pure Integer Programming
Two-Stage Stochastic Mixed-Integer Programming

2 Chance-Constrained Programming
Static Joint Chance-Constrained Programming
Two-stage (Dynamic) Chance-Constrained Programming
Distributionally Robust Chance-Constrained Programming
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Chance-constrained program (CCP)

Consider chance-constrained programs in the general form:

min
x

c>x

s.t. P∗[f (x , ξ) ≥ 0] ≥ 1− ε, (CCP)

x ∈ X .

Often, we do not know P∗ precisely.
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Sample average approximation (SAA)

• Sample average approximation: draw i.i.d. samples {ξi}i∈[N] from P∗.

P∗[f (x , ξ) ≥ 0] ≈ PN [f (x , ξ) ≥ 0] :=
1

N

∑
i∈[N]

1(f (x , ξi ) ≥ 0).

• Focus on constraint functions f (x , ξ) in piecewise linear form

f (x , ξ) := min
p∈[P]

{
(bp − A>x)>ξ + (dp − a>p x)

}
.
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Sample average approximation (SAA)

Approximate , (CCP) by

min
x

c>x

s.t.
1

N

∑
i∈[N]

1(f (x , ξi ) ≥ 0) ≥ 1− ε

︸ ︷︷ ︸
MIP-representable

, (SAA)

x ∈ X .

Essentially, we need to ensure that that at least N(1− ε) samples satisfy f (x , ξi ) ≥ 0.

The out-of-sample performance of the solution from (SAA) is often poor, particularly for small N.

• Just because PN [f (x , ξ) ≥ 0] ≥ 1− ε does not mean that P∗[f (x , ξ) ≥ 0] ≥ 1− ε.
• The so-called “Optimizer’s Curse” [Smith and Winkler, 2006].
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Improving out-of-sample performance

• Distributionally robust chance constrained program:

min
x

c>x

s.t. P[f (x , ξ) ≥ 0] ≥ 1− ε ∀ P ∈ FN(θ), (DR-CCP)

x ∈ X ,

where FN(θ): an ambiguity set of distributions on RK that contains the empirical
distribution PN :

FN(θ) := {P : d(PN ,P) ≤ θ} , w.h.p. P∗ ∈ FN(θ).

• Intuition: PN will be (w.h.p.) close to P∗, so make sure P[f (x , ξ) ≥ 0] ≥ 1− ε for all P in a
radius θ ball around PN .

𝜃

Ρ!

ℱ!(𝜃)

• When N large, make the radius θ smaller.

• When N small, we are not as confident that PN is close to P∗, so make the radius θ larger.
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Ambiguity set

Wasserstein ambiguity set with radius θ:

FN(θ) := {P : dW (PN ,P) ≤ θ}

where
dW (P,P′) := inf

Π

{
E(ξ,ξ′)∼Π[‖ξ − ξ′‖] : Π has marginal distributions P,P′

}
.

Figure 2: Wasserstein distance dW (PN , P): minimum distance required to transport grey bars to red curve.

Has recently become very popular in optimization and machine learning [Mohajerin Esfahani and
Kuhn, 2018].
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Distance to violation

• For a given parameter ξ and decision x , define the distance to violation:

dist(ξ, x) := inf
∆
{‖∆‖ : f (x , ξ + ∆) < 0} .

• Safe set S(x) = {ξ : f (x , ξ) ≥ 0}

𝑆(𝑥)

𝑆(�̅�)

𝑑𝑖𝑠𝑡 𝜉!, 𝑆 𝑥

𝜉!

𝜉"𝜉#
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Reformulation of (DR-CCP)

We now need to reformulate semi-infinite constraint P[f (x , ξ) ≥ 0] ≥ 1− ε ∀ P ∈ FN(θ).

• [Blanchet and Murthy, 2019], [Gao and Kleywegt, 2016], [Xie, 2019] show that for
Wasserstein ambiguity

P[f (x , ξ) ≥ 0] ≥ 1− ε ∀ P ∈ FN(θ) ⇐⇒ CVaR
PN
1−ε(dist(ξ, x)) ≥ θ

ε

CVaR
PN
1−ε(dist(ξ, x)) := take the lowest εN distances amongst {dist(ξi , x)}i∈[N],

then take their average

= max
t,r

t − 1

εN

∑
i∈[N]

ri :
ri ≥ 0, i ∈ [N]

t − ri ≤ dist(ξi , x), i ∈ [N]

 .

Here larger distances are preferred, so distances are acceptability functionals rather than risk.
CVaR definition is adapted accordingly.

• Usual SAA-CCP formulation implies VaR
PN
1−ε(dist(ξ, x)) ≥ 0. Its (conservative) CVaR

approximation gives CVaR
PN
1−ε(dist(ξ, x)) ≥ 0. Compare with (DR-CCP).
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Reformulation of (DR-CCP)

This implies that (DR-CCP) can be reformulated as

min
x,t,r

c>x

s.t. εt ≥ θ +
1

N

∑
i∈[N]

ri , (DR-CCP-f)

t − ri ≤ dist(ξi , x), i ∈ [n]

ri ≥ 0, i ∈ [n]

x ∈ X .

The last step is to reformulate the constraint t − ri ≤ dist(ξi , x).

• This depends on how we define f (x , ξ).

Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 116 / 133



Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Linear constraints

• For simple presentation, we focus on a single linear function with right-hand side uncertainty
(no bilinear term):

f (x , ξ) := ξ + d − a>x ,

for given a, d .

• Distance to violation:

dist(ξ, x) = max{0, ξ + d − a>x} = max {0, f (x , ξ)} .

• Our results extend to polyhedral structures of the form

f (x , ξ) := min
p∈[P]

{
(bp − A>x)>ξ + (dp − a>p x)

}
≥ 0.

• The only condition we impose is that the bilinear term (A>x)>ξ is the same for all p ∈ [P].
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Reformulation of (DR-CCP)

However, t − ri ≤ dist(ξi , x) = max {0, f (x , ξi )}

⇐⇒ t − ri ≤ 0 OR t − ri ≤ f (x , ξi ).

is a non-convex constraint.

• We can model this with a binary variable and big-M constants:

zi ∈ {0, 1},
t − ri ≤ f (x , ξi ) + Mizi

t − ri ≤ Mi (1− zi )

zi = 1 indicates when t − ri ≤ 0, and zi = 0 indicates when t − ri ≤ f (x , ξi ).

• Mi is a sufficiently large constant. For some fixed optimal decision x of (DR-CCP), we need

Mi ≥ |f (x , ξi )| ∀i ∈ [N].

Choosing in this way requires understanding the structure of optimal solutions, which is not
easy, and can still result in large values.
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The basic MIP reformulation of (DR-CCP)

[Chen et al., 2018], [Xie, 2019] gave the following MIP reformulation for (DR-CCP):

min
z,r,t,x

c>x

s.t. z ∈ {0, 1}N , t ≥ 0, r ≥ 0, x ∈ X ,

ε t ≥ θ +
1

N

∑
i∈[N]

ri , (DR-CCP-MIP)

Mi (1− zi ) ≥ t − ri , i ∈ [N],

f (x , ξi ) + Mizi ≥ t − ri , i ∈ [N].

Difficult to solve, especially for small θ even for N = 100.
In [Ho-Nguyen,Kılınç-Karzan, K., Lee, 2021a], we scale this up to N = 1000 ∼ 3000.

Küçükyavuz (IPCO Summer School) Stochastic Mixed-Integer Programming May 17-18, 2021 119 / 133



Chance-Constrained Programming Distributionally Robust Chance-Constrained Programming

Improvements to (DR-CCP-MIP) [Ho-Nguyen,Kılınç-Karzan, K., Lee,
2021a+]

Our key insight finds a link between (SAA) and (DR-CCP). This leads to a number of
enhancements.

SAA for CCP
• Stronger Formulation
• Improved Big-M from quantile
• Mixing Inequalities

DR-CCP with 
Wasserstein Ambiguity

Robust 0-1 Program
• Path Inequalities

CVaR Formulation
• Variable bounds
• Constraint reduction
• A “robust” substructure
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Connection to (SAA)

Denote the feasible regions of (SAA) and (DR-CCP) as

XSAA := {x ∈ X : PN [f (x , ξ) ≥ 0] ≥ 1− ε} ,

=

x ∈ X :

1

N

∑
i∈[N]

wi ≤ ε, w ∈ {0, 1}N

f (x , ξi ) + Miwi ≥ 0, i ∈ [N]


XDR :=

{
x ∈ X : inf

P∈FN (θ)
P[f (x , ξ) ≥ 0] ≥ 1− ε

}

=

x ∈ X :

ε t ≥ θ +
1

N

∑
i∈[N]

ri , z ∈ {0, 1}N

Mi (1− zi ) ≥ t − ri , i ∈ [N],

f (x , ξi ) + Mizi ≥ t − ri , i ∈ [N]

 .

Observation: in general FN(0) = {PN} ⊆ FN(θ) for any θ ≥ 0, so XDR ⊆ XSAA.

Näıvely, BLUE constraints are valid for XDR, but require different binary variables (w vs. z).
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Stronger formulation

Key result 1: for both RED and BLUE constraints, the same binary variables z can be used.

min
z,r,t,x

c>x

s.t. z ∈ {0, 1}N , t ≥ 0, r ≥ 0, x ∈ X ,

ε t ≥ θ +
1

N

∑
i∈[N]

ri ,

Mi (1− zi ) ≥ t − ri , i ∈ [N],

f (x , ξi ) + Mizi ≥ t − ri , i ∈ [N],

1

N

∑
i∈[N]

zi ≤ ε,

f (x , ξi ) + Mizi ≥ 0, i ∈ [N].
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Big-M reduction via the mixing procedure

Key result 2: we gain much more from the SAA constraints∑
i∈[N]

zi ≤ εN, f (x , ξi ) + Mizi ≥ 0, ∀i ∈ [N].

(Mixing procedure) [Luedtke et al., 2010] showed that we can drastically reduce Mi to∑
i∈[N]

zi ≤ εN, f (x , ξi ) + mizi ≥ 0, ∀i ∈ [N].

• For each i ∈ [N], we have the inequalities

t − ri ≤ Mi (1− zi ), t − ri ≤ f (x , ξi ) + Mizi

0 ≤ f (x , ξi ) + mizi .

• It is easily checked that these imply

t − ri ≤ f (x , ξi ) + mizi .

• These can replace the inequalities t − ri ≤ f (x , ξi ) + Mizi in (DR-CCP-MIP).
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Compact formulation of (DR-CCP-MIP) via CVaR interpretation

Key result 3: recall that the DR-CCP is

CVaR
PN
1−ε(dist(ξ, x)) = max

t,r

t − 1

εN

∑
i∈[N]

ri :
ri ≥ 0, i ∈ [N]

t − ri ≤ dist(ξi , x), i ∈ [N]

 ≥ θ

ε
.

• There always exists an optimal solution to the program such that

t = (bεNc+ 1)-th smallest value amongst
{

dist(ξi , x) = (ξi + d − a>x)+

}
i∈[N]

q = (bεNc+ 1)-th smallest value amongst {ξi}i∈[N].

• Suppose ξi ≥ q. Then immediately t ≤ dist(ξi , x). But then

t − ri ≤ dist(ξi , x) ⇐⇒ 0 ≤ ri + (dist(ξi , x)− t) .

Therefore when ξi ≥ q, this constraint is vacuous, so we can remove N − bεNc constraints.
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Strengthened compact formulation of (DR-CCP-MIP)

min
z,r,t,x

c>x

s.t. z ∈ {0, 1}N , t ≥ 0, r ≥ 0, x ∈ X ,

ε t ≥ θ +
1

N

∑
i∈[N]

ri ,

Mi (1− zi ) ≥ t − ri , i ∈ [N],

f (x , ξi ) + (q − ξi )zi ≥ 0, i ∈ [N],

1

N

∑
i∈[N]

zi ≤ ε,

f (x , q)− t ≥ 0

f (x , ξi ) + mizi ≥ t − ri , i ∈ [N] s.t. q > ξi .
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Valid inequalities for (DR-CCP-MIP)

Key result 4: classes of valid inequalities can be derived by analysing different substructures in
the formulation.

• Consider again the so-called mixing substructure from the (SAA) constraints:

MIX =

{
(x , z) :

f (x , ξi ) + mizi ≥ 0, i ∈ [N]

z ∈ {0, 1}N

}
conv(MIX) = MIX ∩ {mixing inequalities} .

• There is also a substructure arising from robust 0-1 programming [Bertsimas and Sim, 2003]:

ROB =

{
(x, z, r , t) :

f (x, ξi ) + mi zi ≥ t − ri , i ∈ [N] s.t q > ξi

z ∈ {0, 1}N

}
conv(ROB) = ROB ∩ {path inequalities [Atamtürk, 2006]} .
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Computational study

A distributionally robust chance-constrained transportation problem [Chen et al., 2018].

m1

m2

ξ1

ξ2

ξ3

ξ4

c11

c12

c13

c14

Given a set of factories [F ] with capacities mf , f ∈ [F ], a set of
distribution centers [D] must meet the random demands ξd ,
d ∈ [D] with high probability at minimum cost.

min c>x

s.t. P

∑
f∈[F ]

xfd ≥ ξd , ∀d ∈ [D]

 ≥ 1− ε, P ∈ F(θ),

∑
d∈[D]

xfd ≤ mf , f ∈ [F ],

xfd ≥ 0, f ∈ [F ], d ∈ [D].

F = 5, D = 50, ε = 0.1, θ1 = 0.001, θj = j−1
10
θmax j = 2, . . . , 10
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Performance analysis

We compare the following formulations (1 hour time limit)

• Basic: the basic formulation

• Improved: the strengthened compact formulation

• Mixing+Path: the strengthened compact formulation with both mixing and path inequalities.

Metrics:

• Time: recorded in seconds if instance is solved to optimality within one hour.

• Gap: if instance not solved in one hour, the final optimality gap as a percentage.
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Summary of computational results

N = 100

Basic Improved Mixing+Path

Time(Gap)Fnd Time Time M/P Cuts

θ1 *(1.16)10 4.29 8.40 41.7/274.6
θ2 26.58(*) 0.04 0.06 0.3/88.2
θ3 4.27(*) 0.04 0.05 0.0/73.8

N = 3000

Basic Improved Mixing+Path

Time(Gap)Fnd Time(Gap)Fnd Time(Gap)Fnd M/P Cuts

θ1 n/a0 *(0.78)10 *(0.48)10 1470.3/4228.1

θ2 *(69.56)5 *(0.49)10 *(0.41)10 0.0/6102.2

θ3 *(48.65)4 17.89(*) 18.29(*) 0.0/200.8

θ4 *(15.01)4 13.74(*) 13.94(*) 0.0/94.1

θ5 *(1.11)10 12.75(*) 13.55(*) 0.0/88.3
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Summary of computational results

N = 3000

Basic Improved Mixing+Path

R.time R.gap R.time R.gap R.time R.gap

θ1 n/a n/a 72.08 0.80 3601.05 0.48
θ2 3144.09 70.41 134.46 0.55 3600.22 0.41
θ3 2952.26 51.31 17.89 0.01 18.29 0.01
θ4 2684.77 15.72 13.74 0.01 13.94 0.01
θ5 3181.43 1.14 12.75 0.00 13.55 0.00
θ6 3176.11 0.63 12.29 0.00 12.68 0.00
θ7 2958.81 0.55 12.28 0.01 12.95 0.01
θ8 2876.49 0.47 12.48 0.01 12.65 0.01
θ9 2781.77 0.45 11.96 0.01 12.52 0.01
θ10 2439.69 0.41 8.04 0.01 8.94 0.01
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Discussion

• Strong reformulation of (DR-CCP) that exploits connections with various other models for
uncertainty

• nominal (SAA) relaxation

• conditional value-at-risk (CVaR) interpretation

• a substructure that arises in robust 0-1 programming.

Using these connections we provided two classes of valid inequalities for (DR-CCP).

• Extended to more general polyhedral safety sets involving multiple linear constraints and
left-hand side uncertainty. [Ho-Nguyen,Kılınç-Karzan, K., Lee, 2021b+]

• Left-hand side uncertainty case involves conic constraints in the form

‖Ax‖p ≤ t.

• [Xie, 2019] use polymatroid inequalities to strengthen the formulation when x is a pure binary
decision vector, using submodularity of ‖Ax‖p .

• [Kılınç-Karzan, K., and Lee, 2020+] extend the polymatroid inequalities to obtain valid inequalities
when x is mixed-binary. (MIP Workshop, May 25, 2021)

• Submodularity can also be exploited for distributionally robust pure binary optimization problems
under moment-based ambiguity sets, e.g., [Zhang et al., 2018].
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Parting thoughts

• Stochastic optimization problems often give rise to large-scale MIPs

• Opportunities for theoretical, methodological, and computational MIP research

• Wide range of applications with broad impact (disaster logistics, energy, healthcare, and
more).
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• M. Zhang, S. Küçükyavuz, and S. Goel. A branch-and-cut method for dynamic decision making under joint chance
constraints, Management Science, 60(5):1317-1333, 2014.
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