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Facets of linear programming

Discrete Continuous

" Continuous
solutions

®  Basic solutions

®"  Polyhedral

. . [ |
combinatorics Convex program

" Approximate
solution

®  Exact solution




Linear programming algorithms
min c ' x
Ax =b

® n variables, m constraints
x =0

" [:total bit-complexity of the rational input (4, b, ¢)
" Simplex method: Dantzig, 1947/

" Weakly polynomial algorithms: poly(L) running time
" Ellipsoid method: Khachiyan, 1979

" Interior point method: Karmarkar, 1984




Weakly vs strongly polynomial

. : T
algorithms for LP MILesx
Ax =b

" 7 variables, m constraints, total encoding L. x=0

" Strongly polynomial algorithm:
" poly(n,m) elementary arithmetic operations
(+, —,X,=, =), independent of L.

® PSPACE: The bit-length of numbers during the
algorithm remain polynomially bounded in the size of
the input.

® Can also be defined in the real model of computation



Is there a strongly polynomial
algorithm for Linear
Programming?

Smale’s 9t question



Strongly polynomial algorithms for some
classes of Linear Programs

" Systems of linear inequalities with at most two
nonzero variables per inequality: Megiddo '83

" Network flow problems
® Maximum flow: Edmonds-Karp-Dinitz "70-72, ...

® Min-cost flow: Tardos "85, Fujishige '86,
Goldberg-Tarjan '89, Orlin '93, ...

® Generalized flow: V '17, Olver-V '20

® Discounted Markov Decision Processes:
Ye '05, Ye '11, ...



Dependence on the constraint matrix only

minc'x, Ax=b x>0

" Algorithms with running time dependent only on A4, but
not on b and c.

® Combinatorial LP’s: integer matrix A € Z™*",
A, = max{| det(B) |: B submatrix of A}

Tardos '86: poly(n, m,log A,) black box LP algorithm

® |ayered-least-squares (LLS) Interior Point Method
Vavasis-Ye '96: poly(n, m,log y,) LP algorithm in the
real model of computation
X 4. condition number

" Dadush-Huiberts-Natura-V '20: poly(n, m,log 1)
X 23 optimized version of y,
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Dadush-Huiberts-Natura-V "20: A scaling-invariant algorithm
for linear programming whose running time depends only on

the constraint matrix

Dadush-Natura-V '20: Revisiting Tardos’s framework for linear
programming: Faster exact solutions using approximate

solvers




Part 1

Tardos’s algorithm for min-cost flows
circuits, proximity, and variable fixing




The minimum-cost flow problem

" Directed graph G = (V, E), node demands b:V — R with
b(V) =0, costsc: E - R.

. 6 (1)
minc'x 5~ (i)
S. t. z in— 2 xl-j=bl- VieV i
jies— (i) ijest (i)
x =0
®" Form with arc capacities can be reduced to this form.
®  Constraint matrix is totally unimodular (TU) .. arcs

nodes




The minimum-cost flow problem:
optimality

" Directed graph G = (V, E), node demands b:V — R with
b(V) =0, costs c: E — R. 5-() 5*(0)

min ¢ x f E

S. t. z xji_ z xij =bi VieV
(UJ,Hed~ (D) (L,)ES* (D)
x=0

®  Dual program:

max b '
S. t. T — T < Cij Vij eEFE

" Optimality: fl] >0 = i —Tt; = Cjj



Dual solutions: potentials

=

® Dual program: max cost feasible
potential

maxb '
S. t. Tl'j — T < Cij Vl] =)

¥ Residual cost:

7T_ — I
Cij=¢j+m—m=0

N RO R, N WA OO
(b/
\/H |
w’\

® Residual graph:
Er = EU{(,i):f; > 0}
Gi = ~Cj

LEMMA: The primal feasible f is optimal <
Jm: ¢t = 0forall (i,j) € E and Cl]—OIfo>O(:)

0 forall (i,j) € Ef

l]—

=V % cu =




Variable fixing by proximity

" If for some (i,)) € E we can show that f;; = 0 in every
optimal solution, then we can remove (i,j) from the
graph.

" Overall goal: in strongly polynomial number of steps,
guarantee that we can infer this for at least one arc.

PROXIMITY THEOREM: Let T be the
optimal dual potential for costs ¢, and f~
an optimal primal solution for the original
costs c. Then,

>l lle=élle = fij=0




Circulations and cycle decompositions

"  For the node-arc incidence matrix 4, ker(4) € RE is the set of

circulations:
in-flow=out-flow

" LEMMA: every circulation f = 0 can be decomposed as

f:z/li)(ci; 1,20
i

for directed cycles (;

2+3

2+3




Circulations and cycle decompositions

" LEMMA: Let f and f' be two feasible flows for the same
demand vector b. Then, we can write

f,:f+z/1i)(ci; ;=20
:

for sign-consistent directed cycles C; in E.
" f fl-’j > fi;j then cycles may only contain ij but not ji.
" U fi; > fl-’j then cycles may only contain ji but not ij.

" If fi; = fi; then no cycle contains ij or ji.

Every cycle is moving from f towards f'.



PROXIMITY THEOREM: Let T be the optimal dual
potential for costs ¢, and f* an optimal primal
solution for the original costs c. Then,

ci; >Vl-llc—¢lle = fj=0




Rounding the costs

Rescale ¢ such that ||c||e = |V|+/|E]
Round costs as ¢;; = |¢;j]

For ¢ we can find optimal primal and dual solutions
in strongly polynomial time, e.g. the Out-of-Kilter
method by Ford and Fulkerson 1962.

For the optimal dual 7z, fix all arcs to O that have
¢ > V> V] lc = éllo

QUESTION: Why would such an arc exist?



Minimum-norm projections

®  Residual cost:
n — — "
cij=¢j+tm—m; =0

" The cost vectors
U={c":mreR"} c RE
form an affine subspace.
" For any feasible flow f and any residual cost c™,
(™' f=c"f+b'n
®  Solving the problem for ¢ and c™ is equivalent.
" |f0€U,ie. 3m:c™ = 0, then every feasible flow is optimal

" |DEA: Replace the input ¢ by the min norm projection to the
affine subspace U.:

¢™ = arg min ||c™ C
8n€RV|| P

T



Rounding the costs

® Assume c is chosen as a min norm projection:
<™z = llclly v e RY

" Rescale ¢ such that ||c||e = |VI/|E]

" Round costs as &;; = [c;]

" For the optimal dual 7, fix all arcs to O that have
ci; > VI >1V]-llc — €l

" | EMMA: There exist at least one such arc.
PROOQOF:

B ety el felle
JIEl ,/|E JIE]
Also note that
cf->¢l >0



Summary of Tardos’s algorithm

" Variable fixing based on proximity that can be shown by
cycle decomposition.

® Replace the input cost by an equivalent min-cost projection
® Round to small integer costs ¢

" Find optimal dual 7 for ¢ with simple classical method

" |dentify a variable fl-j- = 0 as one where cfj is large and
remove all such arcs.

B |terate
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Part 2
The circuit imbalance measure k,
and the condition measure y 4




The circult imbalance measure

" The matrix A € R™*" defines a linear matroid on
In] ={1,2,...,n}:asetl € [n]is independent if
the columns {a;: i € I} are linearly independent.

" (C c [n]isacircuitif {a;:i € C}is a linearly dependent set
minimal for containment.

" For a circuit C, there exists a vector g¢ € R¢ unique up to a
scalar multiplier such that 5 24 -3

zgicai=0

IEC

" (G, :setofall circuits.

®  The circuit imbalance measure is defined as

Kq = {|]| CECA, ,] C}

gt |



Properties of k4
|97 |

lg¢|

® This measure depends only on the linear subspace
W = ker(A): if ker(A) = ker(B) then k4, = kp

KA=maX{ CECA,LJEC}

" We will use ky, = k4 for W = ker(4)
Connection to subdeterminants:

" For an integer matrix 4 € Z™*",
A, = max{| det(B) |: B submatrix of A}

" Foracircuit C € Gy, with |C| =tletD = A;c € RED* peg
submatrix with linearly independent rows.

C .
DWW e RE-DLX(E-1) remove the i-th column

from D. By Cramer’s rule
D L 9= (det(D®),det(D®), ..., det(D®))




Properties of k4

" LEMMA: For an integer matrix A € Z™*",
K < AA
For a totally unimodular matrix 4, k4 = 1

" EXERCISE:

i. If Aisthe node-edge incidence matrix of
an undirected graph, then k4 € {1,2}

ii.  For the incidence matrix of a complete
undirected graph on n nodes,

Aq = 26



Circuit imbalance and TU matrices

THEOREM (Cederbaum, 1958): If A € Z™ " is a TU-
matrix, then k4 = 1. Conversely, if Kk, = 1 for a linear

subspace W < R" then there exists a TU-matrix A such
that W = ker(4).

PROOF (Ekbatani & Natura):




Duality of circuit imbalances

THEOREM: For every linear subspace
W c R", we have

KW — KwJ_




Circuits in optimization

" Appear in various LP algorithms directly or indirectly

B |PCO summer school 2020: Laura Sanita’s lectures
discussed circuit augmentation algorithms and
circuit diameter

" Integer programming: k has a natural integer
variant that is related to Graver bases



The condition number y 4

74 = sup{||AT(ADA")"AD||: D is positive diagonal matrix}

ii.

Measures the norm of oblique projections
Introduced by Dikin 1967, Stewart 1989, Todd 1990

THEOREM (Vavasis-Ye 1996): There exists a poly(n, m,log x4)
LP algorithm for minc'x,Ax = b,x > 0, A € R™*"

LEMMA

If A is an integer matrix with bit encoding length L, then
X4 <200

%4 = max{||B~1A||: B nonsingular mXxm submatrix of A}
X only depends on the subspace W = ker(A)

Xw = )Zwl



The lifting operator

"  For a linear subspace W c R" and index set I € [n], we let
m;:R"* - R!
denote the coordinate projection, and
(W) = {x;:x € W}

" The lifting operator L : R! - R™ is defined as

LV (z) = argmin{||x||,:x € W,x; = z}

"  This is a linear operator; we can efficiently compute a projection
matrix H € R™ such that L' (z) = Hz.

" LEMMA:

LY (z
74 = max|[L¥]| = max L7 @)

2,
max T 1 S [n],zenm,(W)\ {0}



The lifting operator

LV (z) = argmin{||x||,:x € W,x; = z}

L.

x € W|s.t. 2 = x| Y
x* = LY (&)




The lifting operator

LEMMA:

LW
Kq = max{” ! (Z)HOO:I C[n],zem,(W)\ {0}}

1zlly

PROOQF:

 —
=

L‘I/V (Z\

L1 ‘g




The condition numbers k, and x4

THEOREM: For every matrix A € R™" n > 2

1+ ks < ja<niy

Approximability of k4 and y 4:

LEMMA (Tuncel 1999): It is NP-hard to approximate x4
by a factor better than 2P°ly(rank(4))
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Part 3
Solving LPs:
from approximate to exact




Fast approximate LP algorithms

minc'x
Ax =Db
x =0
" g¢-approximate solution:
" Approximately feasible: ||Ax — b|| < €(||AllzR + ||b]])
= Approximately optimal: ¢ "x < OPT + ¢ ||c|| R

" Finding an approximate solution with log G) running time

dependence implies a weakly polynomial exact algorithm.



Fast approximate LP algorithms
minc'x Ax=b x>0

" nvariables, m equality constraints, Randomized vs. Deterministic
" Significant recent progress:
" RO ((nnz(A) + m2)ymlog®® (n) log (g)) Lee-Sidford '13-'19
"= RO (n‘“ log®™® (n) log (;—l)) Cohen, Lee, Song '19
"= DO (n‘” log?(n) log (g)) van den Brand '20
" RO ((mn +m?)1log?® (n) log (g)) van den Brand, Lee, Sidford, Song '20

" R O((mn+m?*%)1og’°®n)log (;—1)2
van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang '21

Some important techniques:

®  weighted and stochastic central paths
® fast approximate linear algebra

® efficient data structures



minc ' x

Fast exact LP algorithms Ax — b
with Kk, dependence x>0

" nvariables, m equality constraints

THEOREM (Dadush, Natura, V. ‘20) There exists a
poly(n, m,log k) algorithm for solving LP exactly.

"  Feasibility: m calls to an approximate solver
®  Optimization: mn calls to an approximate solver

with € = 1/(poly(n, k4)). Using van den Brand '20, this gives a
deterministic exact 0(mn®*!log?(n) log(x,+n) ) time LP optimization
algorithm

®  Generalization of Tardos '86 for real constraint matrices and with directly
working with approximate solvers.

"  Main difference: arguments in Tardos ‘86 heavily rely on integrality
assumptions



Hoffman’s proximity theorem

Polyhedron P = {x € R™: Ax < b}, point xo & P, norms || |4, II. | 5

THEOREM (Hoffman, 1952): There exists a constant Hy g(A) such that
3x € P: ||x — xollqg < Heg(AII(Axo — D) |Ig

Alan J. Hoffman
1924-2021




LP in subspace form

" Matrix form: A € R™" p e R™,ce R"

min ¢ x maxb'y
Ax =b Aly+s=c
x=z0 s=0

" Subspace form: W = ker(4), d € R"s.t. Ad = b

min c'x max d'(c — s)
xEW +d seWt+c
x =0 s=0



Proximity theorem with x4

THEOREM: For A € R™" d € R", consider the system

xeEW+d,x = 0.

There exists a feasible solution x such that
lx — dlle < K lld™ |4

L

l

l =g




Linear feasibility algorithm

Linear feasibility problem
x€eW+d, x = 0.

® Recursive algorithm using a stronger problem formulation:
x€eEW+d, x = 0.
lx — dlle < C'xiylld™|l4

" Black box oracle for £ = 1/(poly(n, k,))

x€eEW+d
lx — dll < Crylld™|l1
error Ix7lle < €lld™ ]|+




The lifting operator

LV (z) = argmin{||x||,:x € W,x; = z}

L.

x € W|s.t. 2 = x| Y
x* = LY (&)




The linear feasibility algorithm

Problem F (W, d)

1. Call the black box solver to find a solution
z fore = 1/(kyn)* x€EW +d
lx — dlle < C'x&lld™ |l
zeW+d *x20
|z —dllo < Crylld™|l4

127l < elld™ |l

" _ _ kATl
2. Set] ={i€|n]l:z; <xylld™|l1}; I N1 I A NP AN S N R
assume | # [n].

3. Recursively obtain X € ]R{r from
T(ﬂ](W)»Z]) \

4. Returnx =z + L} (% — z)




1. Call the black box solver to find a solution  proplem F(W, d)
z fore = 1/(kyn)*

zeW+d x€eEW+d
|z — d|lo < Cryylld™ |4 lx — dlle < C'xG/lld I
Iz [l < €lld™l4 x>0

2. Set] = {l € [Tl]:Zl' < leld_”]_},
assume | # [n].

3. Recursively obtain X € ]R%{r from
T(ﬂ](W)»Z])

4. Returnx =z + L} (¥ — z))




The linear feasibility algorithm

J={i € [n)iz; < kwlld™|l1};
" |f ] = [n], then we replace d by its projection to W+

® Bound n on the number of recursive calls; can be
decreased to m

" 0(mn®*t°Wlog(ky, + n)) feasibility algorithm using



Certification

" |n case of infeasibility we return an exact Farkas certificate
"y, is hard to approximate within 220 Tuncel 1999

" We use an estimate M in the algorithm

" The algorithm may fail if | L} (% — z))||_ > M||% — 7|,

" |n this case, we restart with
(% —z
- {MZ, 1 »um}
1% =z,

" Qur estimate never overshoots ky, by much, but can be
significantly better.




Proximity for optimization

minc'x max d' (c —s)
xEW+d seWt+c
x =0 s=0

THEOREM: Let s € W' + ¢, s = 0 be a feasible dual
solution, and assume the primal is also feasible. Then
there exists a primal optimal x* € W + d,x™ = 0 such
that

" = dlloo < sy (A~ M1 + [[dsupps )



Optimization algorithm

minc'x max d' (c —s)
x €W +d seWt+c
x =0 s=0

B nm calls to the black box solver
" < n Outer Loops, each comprising < m Inner Loops

" Each Outer Loop finds d with ||d — d|| "small", and (x, s)
primal and dual optimal solutions to
minc'x s.t.xEW +d,d >0

" Using proximity, we can use this to conclude x; > 0 for a
certain variable set I € n and recurse.
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Part 4
Optimizing circuit imbalances




Diagonal rescaling of LP

min ¢ ' x max b 'y
Ax =b Aly+s=c
x=0 s=0

Positive diagonal matrix D € R™*"

min (Dc)'x’ maxb 'y’
ADx' = b (AD)"y' +s' = Dc
x'=0 s'=0

Mapping between solutions:
x' =D 1x, y' =y, s' = Ds



Diagonal rescaling of LP

Positive diagonal matrix D € R™"

min (Dc)Tx' maxb 'y’
ADx' = b (AD)"y' +s' = Dc
x>0 s'=0

Mapping between solutions:
x' =D 1x, y' =y, s' = Ds

" Natural symmetry of LPs and many LP algorithms.
" The Central Path is invariant under diagonal scaling.

® Most “standard” interior point methods are invariant.



Dependence on the constraint matrix only

minc'x, Ax=b x>0

" Algorithms with running time dependent only on A4, but
not on b and c.

® Combinatorial LP’s: integer matrix A € Z™*",
A, = max{| det(B) |: B submatrix of A}

Tardos '86: poly(n,m,log A,) LP algorithm

X

® |ayered-least-squares (LLS) Interior Point Method
Vavasis-Ye '96: poly(n, m,log y,) LP algorithm in the X
real model of computation
X 4. condition number

" Dadush-Huiberts-Natura-V '20: poly(n, m,log 1) v
X 23 optimized version of y,



Optimizing Kk, and y, by rescaling

D = set of nXn positive diagonal matrices
K:l = inf{KAD: D ED}
)Z:l = inf{)ZAD: D € D}

® Ascaling invariant algorithm with y, dependence automatically
yields jy, dependence.

" Recall \/1+ k5 < 4 < nky.

THEOREM (Dadush-Huiberts-Natura-V '20): Given 4 €
R™™ in 0(n*m? + n3) time, one can

* approximate the value k4 within a factor ()4, and
e compute a rescaling D € D satisfying K p < (k).

THEOREM (Tuncel 1999): It is NP-hard to approximate x4
(and thus k) by a factor better than 2P°ly(rank(4))




Approximating k

D = set of nXn positive diagonal matrices
Kk, = inf{kyp: D €D}

" EXAMPLE: Let ker(4) = span((0,1,1,M), (1,0,M, 1) )



Pairwise circult imbalances

® For a circuit C, there exists a vector g¢ € R® unique
up to a scalar multiplier such that

Egicai=0

" (C, :set of all circuits.

" Foranyi,j € [n],

|97 |

9j
C

|9i |

® The circuit imbalance measure is

Kag =— IMaxX K;;
A jjem Y

Kijzmax{ :CECA,s.t.i,jEC}



Cycles are invariant under scaling

VAR AR
I w dddddd L

LEMMA For any directed cycle H on {1,2, .

(k) > 1_[ Kij
(i,j)eH




Circuit imbalance min-max formula

THEOREM (Dadush-Huiberts-Natura-V '20):

1/|H]
K, = max ( 1_[ Kij>
(Lj))EH

. H directed cycle on {1,2, ...,n} }

PROOQF:




Circuit imbalance min-max formula

THEOREM (Dadush-Huiberts-Natura-V '20):

1/|H]
K, = max ( 1_[ Kij>
(Lj))EH

. H directed cycle on {1,2, ...,n} }

® BUT: Computing the k;; values is NP-complete...

" LEMMA: For any circuit C € C4s.t.i,j € C,
C
|97 | S K
lgi | CGew)?
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Part 5
Interior point methods:
basic concepts




Primal and dual LP

Matrix form: A € R™" p € R™, c e R"

minc'x maxb 'y
Ax = b Aly+s=c
x =0 s= 0

Subspace form: W = ker(4), d € R"s.t. Ad = b

minc'x max d' (c —s)
x €W +d seEWT +c¢
x =0 s=0

Complementary slackness: Primal and dual solutions (x, s) are
optimal if x's = 0: for each i € [n], either x; = 0 or s; = 0.

Optimality gap:
c'x—d"(c—s)=x"s.



The central path

®" Foreach u > 0, there exists a unique

solution w(u) = (x(u), y (1), s(n)) such
that

x(Wis(u); =u Vi€ [n]
the central path element for u.

" The central path is the algebraic curve
formed by {w(u): u > 0}

., ® For u — 0, the central path converges to
an optimal solution w* = (x*, y*,s%).

-~~~ Central path

= = = preeor " The optimality gap is s(u) "x(n) = np.

cecessssscsssnee + Corrector

" Interior point algorithms: walk down along
the central path with u decreasing
geometrically.



The Mizuno-Todd-Ye
Predictor-Corrector Algorithm

" Start from point wy = (xq, Yo, Sg) 'near’
the central path at some gy > 0.

B Alternate between

®  Predictor steps: 'shoot down' the
central path, decreasing u by a
factor atleast 1 — f/n.
May move slightly 'farther' from the
central path.

® Corrector steps: do not change

parameter u, but move back 'closer’
to the central path.
-~~~ (Central path
Within O(n) iterations, u decreases by a RS a2
factor 2.



The predictor step

" Step direction Aw = (Ax, Ay, As)

AAx =0
ATAy + As =0
siAx; + x;As; = —x;8; Vi € [n]

" Pick the largest a € [0,1] such that w'
Is still “close enough” to the central path
w'=w+ aAw = (x + alAx,y + aAy,s + als)

" Long step: |Ax;As;| small for every i € [n]
® New optimality gap is (1 — a)u.



The predictor step - subspace view

AAx =0
ATAy +As =0
s;Ax; + x;As; = —x;5; Vi € |n]

Assume the current point w = (x, y, s) is on the central
path. The steps can be found as minimum norm
projections in the (1/x) and (1/5) rescaled norms

x; + Ax;
Ax=argm1n2( . ) s.t. x € W = Kker(4)
i=1 '
n

. s; + Asp)? LT
As=argm1n2( . ) s.t. seEW-=im(4")
i=1 '




Some recent progress on
interior point methods

" Tremendous recent progress on fast approximate
variants LS’ 14-"19,

CLS’19,vdB’20,vdBLSS’20,vdBLLSSSW’21

" Fast approximate algorithms for combinatorial
problems flows, matching and MDPs:
DS’08, M’13, M’16, CMSV’17, AMV'20,
vABLNPTSSW’20, vdBLLSSSW’21
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Part 6
Layered-least-squares interior
point methods




Layered-least-squares (LLS) Interior Point
Methods:

Dependence on the constraint matrix only

)ZZ - inf{)ZAD: D € D}
" Vavasis-Ye '96: 0(n3°log(i4 + n)) iterations

" Monteiro-Tsuchiya '03 0(n3°log(iy + n) +
n“loglog1/¢) iterations

® | an-Monteiro-Tsuchiya ‘09 O(n3°log(ii + n))
iterations, but the running time of the iterations
depends on b and c

" Dadush-Huiberts-Natura-V "20: scaling invariant LLS
method with O(n?° log(n) log(i; + n)) iterations



Near monotonicity of the
central path

LEMMA For w = (x,y, s) on the central path, and for any solution

w' = (x',y',s")st. (x)Ts" < xTs, we have
n
X | Si
—+—<12n
el Xj S
=1

PROOF:

IPM learns gradually improved upper bounds on the optimal solution.




Variable fixing...—or not?

LEMMA After every iteration, there exists variables x; and s; such that

L - xi,si <o(n)
0(n) S;

For the optimal (x*, y*,s*). Thus, xl- and s; have “converged” to their
final values.

" PROOF: Can be shown usmg the form of the predictor step:
x; + Ax;
Ax = argmlnz (x—) s.t. xewWw
i=1 ‘
2

n
_ Si +ASi n
As=argm1n2( . ) s.t. seW
i=1 i

and bounds on the stepsize.




Variable fixing...—or not?

LEMMA After every iteration, there exists variables x; and s; such that
1 Xi Sj

< —

on) — x; S;

Thus, x; and s; have “converged” to their final values.

< 0(n)

We cannot identify these indices, @
just show their existence '




Layered least squares methods

® |nstead of the standard predictor step, split the
variables into layers.

® Variables on different layers “behave almost like
separate LPs”

® Force new primal and dual variables that must have
converged.



Recap: the lifting operator and k4

" For alinear subspace W c R"™ and index set [ € [n], we let
m;:R" > R!
denote the coordinate projection, and
T (W) = {x;:x € W}

" The lifting operator L' : R! - R" is defined as

LW (z) = argmin{||x||,:x € W, x; = z}

|L7" @) .

" LEMMA: Kk, = max{ T < n,(W)}
1

" Foreveryz € m;(W),x =LW(z) € W s.t.

x; = z,and ||x|| < Kallzll1



Motivating the layering idea:
final rounding step in standard |IPM

minc'x maxb 'y
Ax =b Aly+s=c
x=0 s= 0

" Limit optimal solution (x*, y*,s*), and optimal
partition [n] = BU N s.t. B = supp(x™), N =
supp(s™).

" Given (x,y,s) near central path with ‘small enough’
1 = s "x/n such that for every i € [n], either
X; or s; very small.

® Assume that we can correctly guess
B = {i:x; > M\/u}, N = {i:s; > M\/u}



Assume we have a partition B, N, we have
i € B: x; > M/, S; <Au/M
iEN:xi<\/ﬁ/M, Si>M\/ﬁ

Goal: movetox =x+Ax, y=y+Ay,s=s+As

s.t. supp(%) € B, supp(5) € N. Then, x's = 0: optimal solution.

Choice:
Ax = —Ly (xn), As = —LY¥ (sp)

B
IBEREEEREL

BPr
“l“““lll|||lIIIIII|||||"|. D

L

)

|
N

rimal
ual



Layered-least-squares step

Assume we have a partition B, N,

with
iEB:Xi>M\/H, Si<\/ﬁ/M
iEN:Xi<\/ﬁ/M, Si>M\/‘E

B
IBEEEEREL

rimal

Br
“l“||“l|||||IIIIIIII|||“". Dual

L )
|

N

Standard primal predictor step:
n

] Xi + Axl- 2
Ax = arg min z (—)
Xi

i=1
s.t. Ax e W

Vavasis-Ye LLS step with layers
(B,N):

_ X; + Axi 2
Axy = arg mlnz (—)

. Xi
iEN
s.t. AxeW
. X; + Axi 2
Axg = arg mmz: (—)
: Xi
i€EB

S. t. (AXB,AXN) eEW




Layered-least-squares step
Vavasis-Ye ‘96

" Order variables decreasingly as x; = x, = - = x,,

" Arrange variables into layers (J1, /5, ..., J¢); start a new layer when

x;i > 0(M°) XaXit1

" Primal step direction by least squares problems from backwards, layer-

by-layer

® Lifting costs from lower layers low

®  Dual step in the opposite direction

Not scaling invariant!




Progress measure: crossover events
Vavasis-Ye'96

" DEFINITION: The variables x; and x; cross over between u and u',
w> ', if
" 0(m) ()" X (1) = x; (1)
" 0T (") < x;(u") forany u”" <

" LEMMA: In the Vavasis-Ye algorithm, a crossover event happens every
0(n'> log(i4 + n)) iterations, totalling to 0(n3> log(i4 + n)).



Scaling invariant layering
DNHV’'20

" Instead of the ratios x;/x;, we consider the rescaled circuit
imbalance measures k;;x;/x;

" Layers: strongly connected components of the arcs
G ijXi 1
[,j):
J X; poly(n)

The k;; values are not

known: increasingly
improving estimates.




Scaling invariant crossover events
Vavasis-Ye' 96

® DEFINITION: The variables x; and x; cross over between u and u',
w> ', if
" 0™ x; () = rejjx; ()
" 0™ (W) < kyjxi(u”) forany p'" < u'

" Amortized analysis, resulting in improved 0(n?® log(n)log(i4 + n))
iteration bound.



Limitation of IPMs

® THEOREM (Allamigeon-Benchimol-Gaubert-Joswig ‘18): No
standard path following method can be strongly polynomial.

" Proof using tropical geometry: studies the tropical limit of a

family of parametrized linear programs.

ZT2r

N

Tor—1



Future directions

Circuit imbalance measure: key parameter for strongly
polynomial solvability.

LP classes with existence of strongly polynomial algorithms
open:

" | Ps with 2 nonzeros per column in the constraint matrix,

equivalently: min cost generalized flows
® Undiscounted Markov Decision Processes

" Extend the theory of circuit imbalances more generally, to

convex programming and integer programming.

Thank you!
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