Enumerating integer points in polytopes with bounded subdeterminants in polynomial time

Statement & illustration of the algorithm

The max absolute value of any *n*-subdeterminant of $A: \Delta_n$ Width of P in direction v: $w(v,P) \coloneqq max_{x \in P} vx - min_{x \in P} vx$ It is called **facet width** if v is a facet normal of P.

<u>INPUT</u>: Polytope $P \coloneqq$ $\{x \in \mathbb{R}^n : Ax \le b\}$, where A, bintegral and $\Delta_n \leq \Delta$ (fixed). All *n*-subdeterminants of *A* are nonzero. The *i*th row (entry) of A (b) is denoted as a_i (b_i). OUTPUT: Vertices of P's integer hull, P_I .

- 1. By [2], if $n > C(\Delta)$ for some $C: \mathbb{N} \rightarrow \mathbb{N}. P$ can only be a simplex. When $n \leq C(\Delta)$, we can use method in [1].
- 2. If $n > C(\Delta)$, check whether min facet width $< \Delta - 1$.
 - Y) Apply enumeration oracle on P.
 - N) Take n + 1 simplices with small facet width at the corners. Then apply the enumeration oracle on each of them.

 $a_i x = b_i - w(a_i, P)$ Figure 1(i) — Illustration of facet width.

Figure 1(ii) — Illustration of the algorithm.

[1] Cook, William, et al. "On integer points in polyhedra." Combinatorica 12.1 (1992): 27-37.

[2] Artmann, Stephan, et al. "A note on non-degenerate integer programs with small sub-determinants." Operations Research Letters 44.5 (2016): 635-639.

Amitabh Basu, Hongyi Jiang

Johns Hopkins University | Department of Applied Mathematics and Statistics | Baltimore, MD, USA

Enumeration oracle for a 'small' simplex

<u>INPUT</u>: Simplex *P* with $w(a_i, P) \leq W$ (fixed) for $1 \leq i \leq n$. <u>OUTPUT</u>: All integer points in P.

Let the root node be *P*.

for i = 0 : (n - 1) do

- For each nonempty node N at depth *i*, compute the width $W' = w(a_{i+1}, N)$.
- 2. Create the sets $N \cap \{x :$ $a_{i+1}x = b_{i+1} - w$ for $w \in \{0, \dots, [W']\}$ as children of *N*.

end for

Report all the nonempty leaf nodes that are integer points.

Intuition for polynomial **complexity:** As illustrated in Figure 2, N_2 and N_3 are translates of N_1 , so their width in any

direction v is shrunk by at least a factor of $\frac{W-1}{W}$ compared with N_1 . Therefore, the number of their children is also shrunk by a constant factor compared with N_1 . If we count all these translation effects in a recursive manner all the way through depth *n* of the tree, we can bound the number of leaves with a polynomial number.

 $a_2 x = b_2$ $a_2 x$ N_3

$$= b_2 - 1$$

 $a_2 x = b_2 - w(a_2, N_2)$

$$= b_2 - w(a_2, N_3)$$

Figure 2— Illustration of part of the process of enumerating integer points in 'small' simplices. The children nodes of P are N_1 , N_2 and N₃. There are three children nodes of N_1 , two of N_2 and one of N_3 .

Simplices with min facet width $< \Delta - 1$:

min facet width $\leq \Delta \Rightarrow$ max facet width $\leq \Delta f(\Delta)$.

Simplices with min facet width $\geq \Delta - 1$:

- Let C be the simplicial cone defined by the first *n* inequalities of $Ax \leq b$. For each $v \in C$, there exists $\mu \in \mathbb{R}^n_{\geq 0}$, such that $v \coloneqq p - \hat{A}\mu$, where p is the vertex of C. If $v \in C \cap \mathbb{Z}^n$, then $\mu \in \mathbb{Z}_{>0}^n$.
- It can be proved that $S' := conv\{p, p p\}$ $(\Delta - 1)\hat{a}_1, \dots, p - (\Delta - 1)\hat{a}_n\}$ contains all the vertices of C's integer hull, C_I . Also, S' has first *n* facet width = $\Delta - 1$.
- For a 'large' simplex with $\Delta_n \leq \Delta$, take n+1such 'small' simplices at its n + 1 corners, which include all P_I 's vertices, and apply the enumeration oracle on each of them.

Sketch of proof when Δ_n of a simplex is upper bounded by Δ

• Assume \hat{A} is the inverse of the first *n* rows of *A*. Its *i*th column is denoted as \hat{a}_i .

• Sufficient to consider A in Hermite Normal Form with non-decreasing diagonals.

1	• • •	0	0	• • •	ך 0
•	•.	• •	• •	• • •	• • •
0	• • •	1	0	• • •	0
A_{i1}	• • •	$A_{i,i-1}$	A_{ii}	• • •	0
	• • •	• • •	• •	•••	•
A_{n1}	• • •	• •	•	• • •	A_{nn}
$A_{n+1,1}$	• • •	$A_{n+1,i-1}$	$A_{n+1,i}$	• • •	$A_{n+1,n}$

By [1], each abs(entry) is bounded by a constant.

1 : 0	•••	0 : 1	0 : 0	• • •	0 - : 0	Each abs(entry) is bounded by	
$\hat{4}_{i1}$	• • •	$\hat{A}_{i,i-1}$	Â _{ii}	•••	0	a constant.	
: Â _{n1}	•••	• • •	• • •	•••	\hat{A}_{nn} -		

Figure 3(i) — Geometric meaning of \hat{a}_i .

Figure 3(ii) — Truncated simplex.