Johns Hopkins University | Department of Applied Mathematics and Statistics | Baltimore, MD, USA

Statement \& illustration of the algorithm

The max absolute value of any n-subdeterminant of $A: \boldsymbol{\Delta}_{\boldsymbol{n}}$ Width of P in direction $v: \mathbf{w}(\mathbf{v}, \mathbf{P}):=\max _{x \in P} v x-\min _{x \in P} v x$ It is called facet width if v is a facet normal of P.

INPUT: Polytope $P:=$

$\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \mathrm{Ax} \leq b\right\}$, where A, b integral and $\Delta_{n} \leq \Delta$ (fixed). All n-subdeterminants of A are nonzero. The i th row (entry) of $A(b)$ is denoted as $a_{i}\left(b_{i}\right)$. OUTPUT: Vertices of P 's integer hull, P_{I}.

1. By [2], if $n>C(\Delta)$ for some $C: \mathbb{N} \rightarrow \mathbb{N}$. P can only be a simplex. When $n \leq C(\Delta)$, we can use method in [1].
2. If $n>C(\Delta)$, check whether min facet width $<\Delta-1$.
Y) Apply enumeration oracle on P.
N) Take $n+1$ simplices with small facet width at the corners. Then apply the enumeration oracle on each of them.

Figure 1(i) - Illustration of facet width.

Return vertices of P_{I} in polynomial time

Figure 1(ii)- Illustration

 of the algorithm.[1] Cook, William, et al. "On integer points in polyhedra." Combinatorica 12.1 (1992): 27-37.
[2] Artmann, Stephan, et al. "A note on non-degenerate integer programs with small sub-determinants." Operations Research Letters 44.5 (2016): 635-639.

Enumeration oracle for a 'small' simplex

INPUT: Simplex P with
$w\left(a_{i}, P\right) \leq W$ (fixed) for $1 \leq i \leq n$. OUTPUT: All integer points in P. Let the root node be P.
for $i=0:(n-1)$ do

1. For each nonempty node N at depth i, compute the width $W^{\prime}=w\left(a_{i+1}, N\right)$.
2. Create the sets $N \cap\{x$: $\left.a_{i+1} x=b_{i+1}-w\right\}$ for $w \in\left\{0, \ldots,\left\lfloor W^{\prime}\right]\right\}$ as children of N.
end for
Report all the nonempty leaf nodes that are integer points.

Intuition for polynomial

 complexity: As illustrated in Figure $2, N_{2}$ and N_{3} are translates of N_{1}, so their width in any direction v is shrunk by at least a factor of $\frac{W-1}{W}$ compared with N_{1} Therefore, the number of their children is also shrunk by a constant factor compared with N_{1}. If we count all these translation effects in a recursive manner all the way through depth n of the tree, we can bound the number of leaves with a polynomial number.
$\mid a_{2} x=b_{2}$

Figure 2- Illustration of part of the process of enumerating integer points in 'small' simplices. The children nodes of P are N_{1}, N_{2} and N_{3}. There are three children nodes of N_{1}, two of N_{2} and one of N_{3}.

Sketch of proof when Δ_{n} of a simplex is upper bounded by Δ

- Assume \hat{A} is the inverse of the first n rows of A. Its i th column is denoted as \hat{a}_{i}.

Simplices with min facet width $<\Delta-1$:

- Sufficient to consider A in Hermite Normal Form with non-decreasing diagonals.

min facet width $\leq \Delta \Rightarrow \max$ facet width $\leq \Delta f(\Delta)$.

Simplices with min facet width $\geq \Delta-1$:

- Let C be the simplicial cone defined by the first n inequalities of $A x \leq b$. For each $v \in C$, there exists $\mu \in \mathbb{R}_{\geq 0}^{n}$, such that $v:=p-\hat{A} \mu$, where p is the vertex of C. If $v \in C \cap \mathbb{Z}^{n}$, then $\mu \in \mathbb{Z}_{\geq 0}^{n}$.
- It can be proved that $\mathrm{S}^{\prime}:=\operatorname{conv}\{\mathrm{p}, p-$ $\left.(\Delta-1) \hat{a}_{1}, \ldots, p-(\Delta-1) \hat{a}_{n}\right\}$ contains all the vertices of C^{\prime} 's integer hull, C_{I}. Also, S^{\prime} has first n facet width $=\Delta-1$
- For a 'large' simplex with $\Delta_{n} \leq \Delta$, take $n+1$ such 'small' simplices at its $n+1$ corners, which include all P_{I} 's vertices, and apply the enumeration oracle on each of them..

Figure 3(i) - Geometric meaning of \widehat{a}_{i}.

Figure 3(ii) - Truncated simplex.

