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MuLTI-CAPACITATED LOT S1ZING WITH
SuBcoNTRACTING (MCLS-S)

» Data: Demand is known over a planning horizon

» Decision: How much should the retailer order in each time period?
> Objective: Overall ordering costs and holding costs are minimized

» Constraint: Multiple trucks of different capacities Cq,Cyp, ..., Cy
available for ordering in each time period

NETWORK FLOW REPRESENTATION

» Compute the optimal cost o for each interval [k, [ with1 <k <IT

» Construct a directed graph G = (V,A) for V=(1,...,T+1)and A={k, I+ 1:1 <k <I<T}

and assign the cost oy on arc (k, [+ 1)

» Find the least cost route from node 1 to T 4 1 using shortest path algorithm

DP ALGORIiTHM FOR MCLS-S

» In this algorithm, we compute «;; for a given interval [k, I]

DEFINITIONS:

Regeneration Interval |k, 1] : sp_q1 =s;=0,butsy >0fort =k,..., [ —1.
Semi-Regeneration Interval |k, T]: s;_1 =0,and s; >0fort=k,...,T.
Fractional Period for MCLS-S: For MCLS-S, a period t is a fractional period if either

OUTLINE OF THE ALGORITHM FOR MCLS-S VARIANTS OF MCLS-S

LOT-SIZING WITH PIECEWISE CONCAVE PRODUCTION cOsTs (LS-PC-S)

» Present a new algorithm that solves LS-PC-S

> The complexity of our algorithm is O(T?"*3) where m is the number of breakpoints in the
piecewise cost function (as good as Koca et al.[2014])

» Utilize the fact that fractional production levels are dependent only on the total demand
and the value of breakpoints; enables parallel computing

» Hence, despite same complexity, our algorithm is computationally 16 times faster

Di1scrReTE MCLS WITH AND WITHOUT BACKLOGGING

> “All-or-nothing” production in each time period

> Capacity constraint in the MCLS formulation is replaced by x; = > ' , Ciyf;

» Consider two cases: with and without backlogging

» Develop a fixed parameter tractable (polynomial) algorithm that takes O(T"*1) time for a

Shipment X1 Xt XT Xt ¢ { ZiER Ci for all R C {1, ey n}} or z; > 0. fixed 1 > 2
Subcontracting “1 <t “T . . . . . . . . . . . B

Theorem 1: There exists an optimal solution to MCLS-S which comprises of: (a) a series of > Generalize the algorithm of Vyve (2007) for Discrete MCLS with n = 1.
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nventory . . regeneration intervals, each having at most one fractional period, that span the interval [1, T”]
for some 0 < T’ < T, and (b) a semi-regeneration interval [T' + 1, T] with s; > 0 for all CoMPUTATIONAL RESuULTS
/ . o .
5 7 I'"+1 <t < Twhich has no fractional period. » Compared the running time of our algorithm with Koca et al.[2014] and CPLEX 12.70
emand dq t dr

Theorem 2: The DP algorithm below solves MCLS-Sin O (T2"+3) time where T is the number
of time periods in the planning horizon and 7 is the number of capacity modules.

» 01d-DP-LSPC denotes the algorithm for LS-PC presented by Koca et al.[2014]
> New-DP-LSPC denotes the algorithm for LS-PC presented in this work

> DP-1CLS denotes the algorithm for MCLS presented in this work

» No-PI and With-PI denote without and with parallel computing, respectively.

MINLP FormurLATION FOR MCLS-S
T n

T
minimize Y (ps(xt) + helst) + ge(z)) + ) Y awi
f—1 t=1 i=1

T; — number of times module i runs at full capacity from k through ¢

: _ _ T —avectoroft/sforie{l,...,n . . . .
subject to 51 + Xt + 2t = di + 5, t=1,...,1, (1.2 n}l L. > 1" denotes number of periods in the planning horizon
n 7y ey . . .
X < Z Cyi f—1 T 5 — ( i )1 denotes all j length combinations on {1,2,...,n} > Avg. denotes average solution time (in seconds) over five instances of each category;
= 1Jts A .y : : :
i—1 di; — total demand in the interval [k, [] » S.Dev. denotes standard deviation of solution times (in seconds);
yi €{0,1}, t=1,...,Tand » #USI denotes number of instances unsolved using corresponding methodology.
, CALCULATING ALL FRACTIONAL PRODUCTION LEVELS o o o
i=1,...,n, F — Set of fractional production levels; » '-” denotes none of the five instances were solved within 2000 seconds.
4
Xt,5¢,2¢ = 0, t=1,...,T. , . Table: Summary of Results for MCLS and LS-PC
Notations: n n
. . — n-. — ( — ( T | (Cy,..,Cn) CPLEX127 01d-DP-LSPC No-g;W_DP_LS;(/:ith-PI No—PIDP_MCLSWith-PI New-DP-LSPC
> pt(.), g t() and ht() are concave ’El‘ansportatlon, SchontraCtlng and I ’ < T € Z—|— ) O < dkl Z TZCZ < Cn, and dkl Z TZCZ ¢ {Cl’ et Cn_l} > Avg. SDev. #USI| Avg. SDev.| Avg. SDev.| Avg. SDev.| Avg. SDev.| Avg. S.Dev. m| T | (b, b CPLEX127 O1d-DP-LSPC o pr With-PI
. . . 121 121 2 |40 | (670, 1280) 184.6 1275 0 |7594 15 226.5 2.3 36.6 0.7 28.6 1.1 4.7 0.3 Avg. S.Dev. #USI| Avg. S.Dev.| Avg. S.Dev. | Avg. S.Dev.
holdmg cost funCthnS respectlvely. \ / (850, 1590) 4233 4089 2 |4058 21 |101.0 17 | 170 07 | 168 05 | 37 01 2 [50 | (800, 1600) 769 504 0 | 1621 33 |382 10 | 75 04
60 | (960, 1970) 475.0 366.5 1 781.7 1.7 11294 12 96.3 0.7 15.7 0.1 (1310, 2570) 98.2 58.6 0 83.0 2.6 25.8 1.0 6.0 0.2
> C C C are CapaCitieS Of n Vehicles ( n ) (870, 1590) 688.0 348.1 2 14299 6.1 |2531 33 |1453 19 23.7 0.3 75 | (1310, 2570) 811.2 597.6 0 701.6 73 1993 19 39.0 1.0
o o o n 80 | (960, 1970) 19225 0.0 4 - - - 5279 21 86.0 1.3 (1790, 3470) 239.8 212.7 0 375.2 35 |102.1 09 20.0 0.9
11, 22, ' . . . . F = < fU : f?) — dkl — E "['UC for all "['v - [ > (1310, 2570) 9455 5849 1 2504 17 | 414 06 3 [40](970,1950,2810) | 573.3 4130 2 | 3773 11 |1438 16 |288 09
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f (790, 1650, 2410) | 864.7 680.3 2 333.8 22 51.2 1.3 40 | (670, 1280, 1970) | 593.2 497.9 1 13239 53 |543.0 18 |106.7 1.2
. . . . . \ 1=1 / 40 | (670,1280,1970) | 557.6 4336 2 7255 3.7 |1564 2.2 (860,1650,2590) | 986 0.0 4 | 4826 21 |186.2 09 | 368 15
> Xt 1S quantlty to be tr anSported 1IN time perlOd t (860, 1650, 2590) | 249.6 2743 2 3271 25 | 494 17

MiINIMUM CosTt wiTH FRACTIONAL PERIOD

> 7; is quantity to be subcontracted in time period ¢
> yf; is binary variable which is 1 iff vehicle i is setup in period t G (t, T, 1) — value of minimum cost solution of producing ;C; + f* units from k to ¢
> 5; is the inventory at the end of time period ¢ (
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» Atamtirk and Hochbaum|2001]: MCLS-Swithn =1 — O(T°)

» Does there exist a polynomial time exact algorithm for solving . .
MCLS-S with fixed n > 2? (Note that the aforementioned MINLP 1:1. . =1 T
. ) ) Gk(t, T, 0), 1f dkl - i_l TiCi — O Instance Category 1: (40, 670, 1280, 1970)
fOI'mU_lathn haS nT blnar y var lables-) ( o BN criex127 MM op-mcswithpl f Unsolved in 2000 seconds W crioxi27 N NewoPisCwith Pl Unsoived In 2000 seconds

n n
or ¥ TCi+f'<dyfort<I—1) 7Ci+f #dyfort=I

Instance Category 2: (40, 860, 1650, !590)

Instance Category 1: (80, 960, 1970) Instance Category 2: (80, 1310, 2570)

Gplt—1,7,1) + by (L1 Ci+ f° — dyy)
( (a) CPLEX vs. DP-MCLS withn =2 (b) CPLEX vs. New-DP-LSPC withn =3
CONTRIBUTIONS min G};‘(t 17— Z e, 1) + Z (Pt(ci) 4 qu) SuMMARY OF RESULTS:
> For a GIVENn 1 € L+, we develop f1.xed parameter tractable / E{Sle’gfn} \ icS icS » Our algorithm for LS-PC in comparison to Koca et al.[2014] is consistently
(polynomial) dynamic programming (DP) algorithm to solve / - . - 18 times faster in case of 2 breakpoints - 13 times faster in case of 3 breakpoints
MCLS-S to optimality in O(T2”+3) time. Gh(t,1,1) = ¢ +hy ( i—1 TG+ f7 — dkt) . . . .
o , , , e\t by ) — ( » Our algorithm for MCLS in comparison to CPLEX 12.70 is on an average
» MCLS-S can be reformulated as Lot-sizing problem with piecewise 20 times faster ; £9 machi 9 times faster ; £ 3 machi
concave production costs (LS-PC-S) with 2/ — 1 breakpoints min  { Gi(t—1,T— Z e;,0) - 20 times faster in case of 2 machines - 9 times faster in case of 3 machines
> 1S.PC SP alent to MCLS.S with 7 — 0 and i , | 56{18’.-"’71_15} ieS\[oyo) | » Our algorithm for MCLS in comparison to Koca et al.[2014] is consistently
1‘(_) d u; ticl)snei)l;:a S "o W= 1 AR PISCEIISE CONCate min 4 chvj:éze K , otherwise. - 150 times faster for 2 machines and 40 time periods
P ' " . CompruTAaTIONAL RESULTS FOR DisCRETE MCLS:
» Koca, Yaman and Aktiirk|2014]: Reformulation of MCLS-S — O(T?" )+1) . i oY ., _ _ . . . .
N + Z (pt(Ci +1°) +q;+4q, ) + hy Z T,C +f —dy » Compared running time of our algorithms for Discrete MCLS with and without
No. of Complexity using Our Contribution ieS\(oyo) i—1 backlogging with time taken by CPLEX 12.7
vehicles (1) LS-PC-S reformulation . . o
> O(T9) O(T") | » CPLEX unable to solve 81 out of 240 instances within 2000 seconds;
4 O(T3) O(TH) jeglmn} q Grlt—1,t— Z e, 0) + Z (Pt(ci ) + 5]%) » For the remaining 159 instances, average solution time of CPLEX is 810 seconds; average
10 O(T**) O(T*) 55'5]f \ €5 €5 solution time of our algorithms is 83 seconds.
: O (T2 ) O (T2 +) L gl £l (X TG 0 — dyy)
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