
Fixed Parameter Tractable Exact Algorithms for Lot-Sizing Problems
with Multiple Capacities and Concave Costs

Kartik Kulkarni (Joint work with Dr. Manish Bansal)

Department of Industrial and Systems Engineering, Virginia Tech

Multi-Capacitated Lot Sizing with
Subcontracting (MCLS-S)

IData: Demand is known over a planning horizon
IDecision: How much should the retailer order in each time period?
IObjective: Overall ordering costs and holding costs are minimized
I Constraint: Multiple trucks of different capacities C1, C2, . . . , Cn

available for ordering in each time period
Network Flow Representation

Subcontracting
Shipment

Demand

Inventory 1

x1

d1

· · · t

xt

dt

z1 zt zT

· · · T

xT

dT

s0 s1 st−1 st sT−1 sT

MINLP Formulation forMCLS-S

minimize
T∑

t=1

(pt(xt) + ht(st) + gt(zt)) +
T∑

t=1

n∑
i=1

qi
ty

i
t

subject to st−1 + xt + zt = dt + st, t = 1, . . . , T,

xt 6
n∑

i=1

Ciy
i
t, t = 1, . . . , T

yi
t ∈ {0, 1}, t = 1, . . . , T and

i = 1, . . . , n,
xt, st, zt > 0, t = 1, . . . , T.

Notations:
I pt(.), gt(.) and ht(.) are concave transportation, subcontracting and

holding cost functions respectively.
I C1, C2, . . . , Cn are capacities of n vehicles
I q1

t , q2
t , . . . , qn

t ← setup cost of n vehicles in time period t
I xt is quantity to be transported in time period t
I zt is quantity to be subcontracted in time period t
I yi

t is binary variable which is 1 iff vehicle i is setup in period t
I st is the inventory at the end of time period t
Open Question:
IAtamtürk and Hochbaum[2001]: MCLS-S with n = 1→ O(T5)

IDoes there exist a polynomial time exact algorithm for solving
MCLS-S with fixed n > 2? (Note that the aforementioned MINLP
formulation has nT binary variables.)

Contributions
I For a given n ∈ Z+, we develop fixed parameter tractable

(polynomial) dynamic programming (DP) algorithm to solve
MCLS-S to optimality in O(T2n+3) time.
IMCLS-S can be reformulated as Lot-sizing problem with piecewise

concave production costs (LS-PC-S) with 2n − 1 breakpoints
I LS-PC-S is equivalent to MCLS-S with n = 0 and piecewise concave

production costs.
I Koca, Yaman and Aktürk[2014]: Reformulation of MCLS-S→ O(T(2n+1)+1)

No. of
vehicles (n)

Complexity using
LS-PC-S reformulation

Our Contribution

2 O(T9) O(T7)

4 O(T33) O(T11)

10 O(T2049) O(T23)

n O(T(2n+1)+1) O(T2n+3)

IDeveloped a new DP algorithm for LS-PC-S that takes O(T2m+3)

time where m is the number of breakpoints; worst case complexity
same as Koca et. al (2014), but our DP is computationally 16 times
faster than the latter.
IDeveloped an algorithm for Discrete MCLS i.e. capacity constraint

in MCLS-S formulation is replaced by xt =
∑n

i=1 Ciyi
t; generalized a

result from Vyve (2007) for n = 1.
I Provided an extended formulation for MCLS with n = 2 and

Wagner-Whitin (or non-speculative) cost structure; generalized a
result from Pochet and Wolsey (1994) for MCLS with n = 1

Outline of the algorithm forMCLS-S
I Compute the optimal cost αkl for each interval [k, l] with 1 6 k 6 l 6 T

I Construct a directed graph G = (V, A) for V = (1, . . . , T + 1) and A = {k, l + 1 : 1 6 k 6 l 6 T}
and assign the cost αkl on arc (k, l + 1)

I Find the least cost route from node 1 to T + 1 using shortest path algorithm

DP Algorithm forMCLS-S
I In this algorithm, we compute αkl for a given interval [k, l]

Definitions:
Regeneration Interval [k, l] : sk−1 = sl = 0, but st > 0 for t = k, . . . , l − 1.
Semi-Regeneration Interval [k, T]: sk−1 = 0, and st > 0 for t = k, . . . , T.
Fractional Period for MCLS-S: For MCLS-S, a period t is a fractional period if either
xt <
{∑

i∈R Ci for all R ⊆ {1, . . . , n}
}

or zt > 0.

Theorem 1: There exists an optimal solution to MCLS-S which comprises of: (a) a series of
regeneration intervals, each having at most one fractional period, that span the interval [1, T ′]
for some 0 6 T ′ 6 T, and (b) a semi-regeneration interval [T ′ + 1, T] with st > 0 for all
T ′ + 1 6 t 6 T which has no fractional period.

Theorem 2: The DP algorithm below solves MCLS-S in O(T2n+3) time where T is the number
of time periods in the planning horizon and n is the number of capacity modules.

τi → number of times module i runs at full capacity from k through t
τ → a vector of τi’s for i ∈ {1, . . . , n}

Sj →
(
{1, 2, . . . , n}

j

)
; denotes all j length combinations on {1, 2, . . . , n}

dkl → total demand in the interval [k, l]

Calculating All Fractional Production Levels
F→ Set of fractional production levels;

Γ :=

τ ∈ Zn
+ : 0 < dkl −

n∑
i=1

τiCi < Cn, and dkl −
n∑

i=1

τiCi < {C1, . . . , Cn−1}


F :=

f v : f v = dkl −
n∑

i=1

τv
i Ci for all τv ∈ Γ


Minimum Cost with Fractional Period

Gu
k(t, τ, 1)→ value of minimum cost solution of producing τiCi + f v units from k to t

Gu
k(t, τ, 1) =



∞,
if τi > t − k + 1 for any i ∈ {1, . . . , n} or

n∑
i=1

τi + 1 > n(t − k + 1)

or
n∑

i=1

τiCi + f v 6 dkt for t 6 l − 1
n∑

i=1

τiCi + f v , dkl for t = l

Gk(t, τ, 0), if dkl −
∑n

i=1 τiCi = 0

min



Gu
k(t − 1, τ, 1) + ht

(∑n
i=1 τiCi + f v − dkt

)
min

j∈{1,...,n}
S∈Sj

Gu
k(t − 1, τ−

∑
i∈S

ei, 1) +
∑
i∈S

(
pt(Ci) + qi

t

)
+ht

(∑n
i=1 τiCi + f v − dkt

)
min

j∈{1,...,n−1}
S∈Sj:vf v∈S

f v<Cn

Gk(t − 1, τ−
∑

i∈S\{vf v}

ei, 0)

+
∑

i∈S\{vf v}

(
pt(Ci + f v) + qi

t + qvf v

t

)
+ ht

 n∑
i=1

τiCi + f v − dkt


min

j∈{1,...,n}
S∈Sj

Gk(t − 1, τ−
∑
i∈S

ei, 0) +
∑
i∈S

(
pt(Ci) + qi

t

)
+ gt(f v) + ht

(∑n
i=1 τiCi + f v − dkt

)

, otherwise.

Minimum Cost without Fractional Period

Gk(t, τ, 0)→ value of minimum cost solution of producing τiCi units from time period k to t
(computed in a similar manner as Gv

k(t, τ, 1))

Overall Optimal Solution of a given interval [k, l]

αkl =


min
τu∈Γ

{Gu
k(l, τ

u, 1)} for 1 6 k 6 l < T,

min

{
min
τu∈Γ

{Gu
k(l, τ

u, 1)}, min
τ∈{0,...,T}n

{Gk(l, τ, 0)}

}
for 1 6 k 6 l = T.

Variants ofMCLS-S
Lot-sizing with piecewise concave production costs (LS-PC-S)

I Present a new algorithm that solves LS-PC-S
I The complexity of our algorithm is O(T2m+3) where m is the number of breakpoints in the

piecewise cost function (as good as Koca et al.[2014])
IUtilize the fact that fractional production levels are dependent only on the total demand

and the value of breakpoints; enables parallel computing
IHence, despite same complexity, our algorithm is computationally 16 times faster
DiscreteMCLS with and without Backlogging
I “All-or-nothing” production in each time period
I Capacity constraint in the MCLS formulation is replaced by xt =

∑n
i=1 Ciyi

t
I Consider two cases: with and without backlogging
IDevelop a fixed parameter tractable (polynomial) algorithm that takes O(Tn+1) time for a

fixed n > 2.
IGeneralize the algorithm of Vyve (2007) for Discrete MCLS with n = 1.

Computational Results
I Compared the running time of our algorithm with Koca et al.[2014] and CPLEX 12.70
I Old-DP-LSPC denotes the algorithm for LS-PC presented by Koca et al.[2014]
I New-DP-LSPC denotes the algorithm for LS-PC presented in this work
I DP-MCLS denotes the algorithm for MCLS presented in this work
INo-PI and With-PI denote without and with parallel computing, respectively.
I T denotes number of periods in the planning horizon
IAvg. denotes average solution time (in seconds) over five instances of each category;
I S.Dev. denotes standard deviation of solution times (in seconds);
I #USI denotes number of instances unsolved using corresponding methodology.
I ’-’ denotes none of the five instances were solved within 2000 seconds.

Table: Summary of Results for MCLS and LS-PC

n T (C1, .., Cn)
CPLEX 12.7 Old-DP-LSPC

New-DP-LSPC DP-MCLS

No-PI With-PI No-PI With-PI
Avg. S.Dev. #USI Avg. S.Dev. Avg. S.Dev. Avg. S.Dev. Avg. S.Dev. Avg. S.Dev.

2 40 (670, 1280) 184.6 127.5 0 759.4 1.5 226.5 2.3 36.6 0.7 28.6 1.1 4.7 0.3
(850, 1590) 423.3 408.9 2 405.8 2.1 101.0 1.7 17.0 0.7 16.8 0.5 3.7 0.1

60 (960, 1970) 475.0 366.5 1 - - 781.7 1.7 129.4 1.2 96.3 0.7 15.7 0.1
(870, 1590) 688.0 348.1 2 - - 1429.9 6.1 253.1 3.3 145.3 1.9 23.7 0.3

80 (960, 1970) 1922.5 0.0 4 - - - - - - 527.9 2.1 86.0 1.3
(1310, 2570) 945.5 584.9 1 - - - - - - 250.4 1.7 41.4 0.6

3 40 (970, 1950,2810) - - 5 - - - - - - 174.4 1.9 35.4 1.0
(790, 1650, 2410) 864.7 680.3 2 - - - - - - 333.8 2.2 51.2 1.3

40 (670, 1280,1970) 557.6 433.6 2 - - - - - - 725.5 3.7 156.4 2.2
(860, 1650, 2590) 249.6 274.3 2 - - - - - - 327.1 2.5 49.4 1.7

m T (b1, .., bm)
CPLEX 12.7 Old-DP-LSPC

New-DP-LSPC

No-PI With-PI
Avg. S.Dev. #USI Avg. S.Dev. Avg. S.Dev. Avg. S.Dev.

2 50 (800, 1600) 76.9 50.4 0 162.1 3.3 38.2 1.0 7.5 0.4
(1310, 2570) 98.2 58.6 0 83.0 2.6 25.8 1.0 6.0 0.2

75 (1310, 2570) 811.2 597.6 0 701.6 7.3 199.3 1.9 39.0 1.0
(1790, 3470) 239.8 212.7 0 375.2 3.5 102.1 0.9 20.0 0.9

3 40 (970, 1950, 2810) 573.3 413.0 2 377.3 1.1 143.8 1.6 28.8 0.9
(790, 1650, 2410) 1038.8 678.6 2 702.1 1.9 245.2 1.8 49.1 1.6

40 (670, 1280, 1970) 593.2 497.9 1 1323.9 5.3 543.0 1.8 106.7 1.2
(860, 1650, 2590) 98.6 0.0 4 482.6 2.1 186.2 0.9 36.8 1.5

Instance Category 1: (80, 960, 1970)

CPLEX 12.7 DP-MCLS with PI Unsolved in 2000 seconds

Instance Category 2: (80, 1310, 2570)

(a) CPLEX vs. DP-MCLS with n = 2

CPLEX 12.7 New-DP-LSPC with PI Unsolved in 2000 seconds

Instance Category 1: (40, 670, 1280, 1970) Instance Category 2: (40, 860, 1650, 2590)

(b) CPLEX vs. New-DP-LSPC with n = 3

Summary of Results:
IOur algorithm for LS-PC in comparison to Koca et al.[2014] is consistently

- 18 times faster in case of 2 breakpoints - 13 times faster in case of 3 breakpoints

IOur algorithm for MCLS in comparison to CPLEX 12.70 is on an average
- 20 times faster in case of 2 machines - 9 times faster in case of 3 machines

IOur algorithm for MCLS in comparison to Koca et al.[2014] is consistently
- 150 times faster for 2 machines and 40 time periods

Computational Results for DiscreteMCLS:
I Compared running time of our algorithms for Discrete MCLS with and without

backlogging with time taken by CPLEX 12.7
I CPLEX unable to solve 81 out of 240 instances within 2000 seconds;
I For the remaining 159 instances, average solution time of CPLEX is 810 seconds; average

solution time of our algorithms is 83 seconds.

Major References
I Atamtürk A., Hochbaum DS., (2001). Capacity Acquisition, Subcontracting, and Lot Sizing, Management Science, vol. 47, no. 8, pp. 1081–1100.

I Bansal M (2019). Facets for single module and multi-module capacitated lot-sizing problems without backlogging. Discrete Applied Mathematics, 255, 117-141.

I Bansal M, Kianfar K (2015). n-step cycle inequalities: facets for the continuous multi-mixing set and strong cuts for multi-module capacitated lot-sizing
problem, Mathematical Programming, vol. 154 no. 1, pp. 113-144.

I Florian M, Klein M (1971). Deterministic Production Planning with Concave Costs and Capacity Constraints. Management Science, vol. 18, no. 1, pp. 12–20.

I Koca E, Yaman H, Aktürk MS (2014). Lot Sizing with Piecewise Concave Production Costs. INFORMS Journal on Computing, vol. 26, no. 4, pp. 767–779.

I Vyve MV (2007). Algorithms for single-item lot-sizing problems with constant batch size. Mathematics of Operations Research; 32(3): 594–613.

I Pochet Y, Wolsey LA (1994). Polyhedra for lot-sizing with wagner-whitin costs. Math. Prog.; 67(1):297–323.

I Kulkarni K, Bansal M (2019). Exact Algorithms for Lot-Sizing Problems with Multiple Capacities in Each Time Period, Piecewise Concave Production Cost
Functions, and Subcontracting. Technical Report; URL:http://www.optimization-online.org/DB_HTML/2019/07/7294.html.

I Kulkarni K, Bansal M (2020). Discrete Multi-Capacitated Lot-Sizing Problems with Multiple Items. Technical Report; Preprint available at
http://www.optimization-online.org/DB_HTML/2020/11/8090.html.

Corresponding Authors’ Emails: kartikrf@vt.edu, bansal@vt.edu

http://www.optimization-online.org/DB_HTML/2019/07/7294.html
http://www.optimization-online.org/DB_HTML/2020/11/8090.html

