

## Introduction

### Survivable Network Design Problem

Given an undirected multigraph G = (V, E)with non-negative edge costs and an integral cut requirement function  $f: 2^V \to \mathbb{Z}_{\geq 0}$ , the goal is to find a subgraph of G with the minimum cost that satisfies the cut requirements.

### Generalized Steiner Network Problem

Special subcase of SNDP where the cut requirement function can be expressed as a pairwise connectivity function  $r: V \times V \to \mathbb{Z}_{\geq 0}$ , and the goal is to find a minimumcost subgraph of G that contains at least  $r_{ii}$  edge-disjoint paths for each pair  $(i, j) \in V \times V$ .

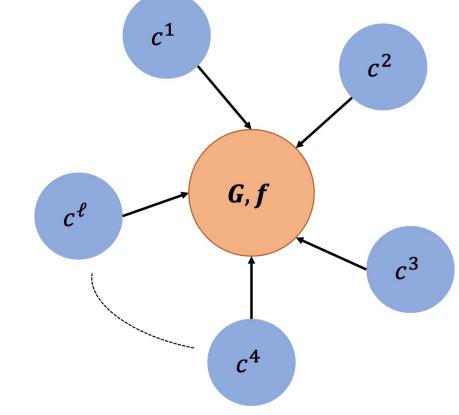
This problem captures:

- Minimum Steiner trees
- Minimum Steiner forests
- Minimum k-edge connected subgraph

**Theorem**.[Jain<sup>1</sup>] The survivable network design problem with a skew supermodular requirement function can be approximated to within a factor of 2 in polynomial time, given access to an oracle that solves its LP relaxation.

### Multi-Criteria

What if given a network and certain connectivity requirements, multiple agents with different (and possibly conflicting) cost functions have to agree on a common architecture? We want to be 'fair' to all the agents.



*Fairness?* Many options like Pareto Optimality<sup>4</sup> and Multi-Objective Approximation<sup>5</sup> are studied in literature. We focus on minimizing the maximum cost among all the agents:

### Max-linear Optimization

Given a feasible set  $\mathcal{F} \subseteq 2^E$  and  $\ell \geq 2$  linear cost functions  $c^1, c^2, \dots, c^\ell$  with  $c^i: \mathcal{F} \to \mathbb{R}_+$ , the goal of Max-linear optimization problem is to find

 $\min_{X \in \mathcal{F}} \max_{i \in [\ell]} c^i(X).$ 

Due to skew supermodularity and integrality of f, we get certain nice properties at extreme points.

*Remark:* This generalizes Jain's result.

# Fair Network Design via Iterative Rounding

Aditi Laddha, Mohit Singh, and Santosh Vempala Georgia Institute of Technology

## Results

We use the following LP relaxation for the Multi-Criteria Survivable Network Design problem (MCSNDP).

### Skew Supermodular

A function  $f: 2^V \to \mathbb{Z}$  is called skew supermodular if for any  $A, B \subseteq V$ , at least one of the following holds:

- $f(A) + f(B) \le f(A \cap B) + f(A \cup B)$
- $f(A) + f(B) \le f(A \setminus B) + f(B \setminus A)$ .
- $f(S) = \max_{i \in S, i \notin S} r_{ii}$  is skew supermodular.

## Extreme Point Support

Let x be an extreme point solution to LP  $(G, f, \{c^i\}_{i=1}^\ell)$  with  $0 < x_e < 1$  for each edge  $e \in E$ . Then there exists a laminar family, B, of tight sets satisfying the following:

- $|E| (\ell 1) \le |B| \le |E| + 1$ , and
- The vectors  $\{\chi(\delta(S)), S \in B\}$  are linearly independent.

**Theorem**. For  $\ell \ge 2$  and any skew supermodular integral function *f*, let *x* be an extreme point solution to LP  $(G, f, \{c^i\}_{i=1}^{\ell})$ . Then there exists an edge e with  $x_e \ge 1/\ell$ .

## Iterative Multi-Criteria Network Design Algorithm Outline

**Input**: A graph G, a skew supermodular function f, and a set of  $\ell \ge 2$  cost functions  $\{c^i\}_{i=1}^\ell$ . Initialize  $F = \emptyset$ .

2. While  $f \neq 0$ :

- 1. Find an optimal extreme point solution x to LP (G, f,  $\{c^i\}_{i=1}^{\ell}$ ).
- 2. Add all edges with  $x_e \ge 1/\ell$  to *F*.
- 3. Update G and f.

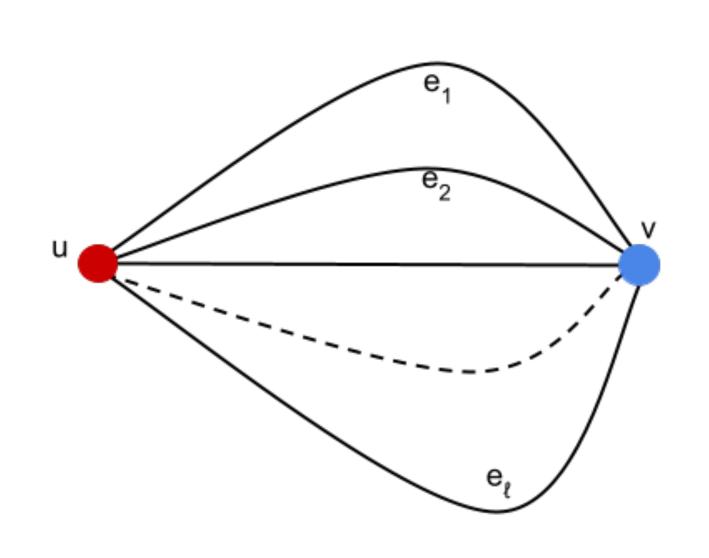
Output: F.

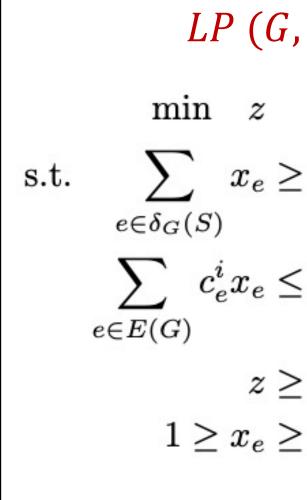
## Integrality Gap:

The integrality gap of LP  $(G, f, \{c^i\}_{i=1}^{\ell})$  is  $\ell$ . For  $\ell \geq 2$ , consider a multi-graph containing 2 nodes u, v with  $\ell$  edges  $\{e_1, e_2, \dots, e_\ell\}$ . Demand function is  $f(\{u\}) = f(\{v\}) = 1$ . Cost functions:  $a^i = \int 1$  if i = j

$$c_{e_j} = \begin{cases} 0 & \text{otherwise} \end{cases}$$

The integral optimal value is 1 but  $z_{LP} = 1/\ell$ .





# $LP(G, f, \{c^i\}_{i=1}^{\ell})$

$$f(S) \quad \forall S \subseteq V$$

$$\leq z \quad \forall i \in \{1, \dots, \ell\}$$

$$\geq 0$$

$$\geq 0 \quad \forall e \in E(G) .$$

# Conclusion

**Theorem**. For  $\ell \geq 2$ , there is a polynomial-time  $\ell$ -approximation algorithm for the Fair generalized Steiner network problem with  $\ell$  cost functions.

### Remarks.

- The algorithm and the guarantee extend to the multi-criteria survivable network design problem with a skew supermodular cut requirement function provided the LP relaxation can be solved in polynomial time.
- Fair network design for 2 players has no penalty in the approximation factor!

## Hardness of Approximation

As a consequence of the hardness of approximation of multi-criteria shortest path<sup>3</sup>, we get the following hardness result.

**Theorem**. The multi-criteria generalized Steiner network problem with  $\ell$  cost functions is not approximable within  $\log^{1-\epsilon} \ell$  for any  $\epsilon > 0$ , unless NP  $\subseteq$  DTIME $(n^{\text{poly}(\log n)})$ .

# Future Work

- Can we get better approximation algorithms using stronger LP relaxations?
- 2. Can we improve the hardness of approximation factor to match the upper bound?
- 3. Can we get better approximation algorithms for multi-criteria versions of special subclasses of network design problems, e.g., uniform *k*-connectivity?

## References

- Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem. Combinatorica, 21(1):39–60, 2001.
- Adam Kasperski and Paweł Zieliński. On the approximability of minmax (regret) network optimizationproblems. Information Processing Letters, 109(5):262-266, 2009.
- 3. Viswanath Nagarajan, R Ravi, and Mohit Singh. Simpler analysis of lp extreme points for traveling salesman and survivable network design problems. Operations Research Letters, 38(3):156–160, 2010
- 4. Christos H Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs and optimal access of web sources. In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 86–92. IEEE, 2000.
- Ramamoorthi Ravi, Madhav V Marathe, Sekharipuram S Ravi, Daniel J Rosenkrantz, and Harry B Hunt III. Many birds with one stone: Multiobjective approximation algorithms. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 438–447, 1993.
- 6. Uthaipon Tantipongpipat, Samira Samadi, Mohit Singh, Jamie H Morgenstern, and Santosh S Vempala. Multi-criteria dimensionality reduction with applications to fairness. Advances in neural information processing systems, (32), 2019.

