
For ` ≥ 2, consider a multi-graph containing 2 nodes u, v with ` edges {e1, e2, . . . , e`}. The demand function is f({u}) = f({v}) = 1. For i ∈ [`], the cost function c i : E → R≥0 is 
defined as c i ej = ( 1 if i = j 0 otherwise. The optimal integral solution simply selects one of the edges with cost 1. However, the extreme point solution for LPmcsndp is xei = 
1/` for all i ∈ {1, . . . , `} with maxi∈[`] P e c i exe = 1/`.

Survivable Network
Design Problem
Given an undirected 
multigraph 𝐺 = (𝑉, 𝐸)
with non-negative edge 
costs and an integral cut
requirement function
𝑓: 2! → ℤ"#, the goal
is to find a subgraph of G 
with the minimum cost that 
satisfies the cut requirements. 

Generalized Steiner Network Problem
Special subcase of SNDP where the cut requirement 
function can be expressed as a pairwise connectivity 
function 𝑟: 𝑉×𝑉 → ℤ"#, and the goal is to find a minimum-
cost subgraph of 𝐺 that contains at least 𝑟$% edge-disjoint 
paths for each pair (𝑖, 𝑗) ∈ 𝑉×𝑉.

This problem captures:
• Minimum Steiner trees
• Minimum Steiner forests
• Minimum 𝑘-edge connected subgraph

Theorem.[Jain1] The survivable network design problem 
with a skew supermodular requirement function can be 
approximated to within a factor of 2 in polynomial time, 
given access to an oracle that solves its LP relaxation.

Multi-Criteria
What if given a network and
certain connectivity 
requirements, multiple 
agents with different (and
possibly conflicting) cost 
functions have to agree 
on a common architecture?
We want to be ‘fair’ to all 
the agents.

Fairness? Many options like Pareto Optimality4 and Multi-
Objective Approximation5 are studied in literature. We 
focus on minimizing the maximum cost among all the 
agents:

Max-linear Optimization
Given a feasible set ℱ ⊆ 2& and ℓ ≥ 2 linear cost functions 
𝑐', 𝑐(, … , 𝑐ℓ with 𝑐$: ℱ → ℝ*, the goal of Max-linear 
optimization problem is to find

min
+∈ℱ

max
$∈[ℓ]

𝑐$ 𝑋 .

We use the following LP relaxation for the Multi-Criteria
Survivable Network Design problem (MCSNDP).

Skew Supermodular
A function 𝑓: 2! → ℤ is called skew supermodular if for
any 𝐴, 𝐵 ⊆ 𝑉, at least one of the following holds: 

• 𝑓 𝐴 + 𝑓 𝐵 ≤ 𝑓 𝐴 ∩ 𝐵 + 𝑓 𝐴 ∪ 𝐵
• 𝑓 𝐴 + 𝑓 𝐵 ≤ 𝑓 𝐴 \ 𝐵 + 𝑓 𝐵 \ 𝐴 .

𝑓 𝑆 = max$∈0,%∉0 𝑟$% is skew supermodular.

Due to skew supermodularity and integrality of 𝑓, 
we get certain nice properties at extreme points.

Extreme Point Support:
Let 𝑥 be an extreme point solution to 𝐿𝑃 (𝐺, 𝑓, 𝑐$ $3'

ℓ ) with 0 < 𝑥4 < 1 for each edge 𝑒 ∈ 𝐸. 
Then there exists a laminar family, 𝐵, of tight sets satisfying the following: 

• 𝐸 − ℓ − 1 ≤ 𝐵 ≤ 𝐸 + 1, and
• The vectors {𝜒 𝛿 𝑆 , 𝑆 ∈ 𝐵} are linearly independent.

Theorem. For ℓ ≥ 2 and any skew supermodular integral function 𝑓, let 𝑥 be an extreme point 
solution to 𝐿𝑃 (𝐺, 𝑓, 𝑐$ $3'

ℓ
). Then there exists an edge 𝑒 with 𝑥4 ≥ 1/ℓ.

Remark: This generalizes Jain’s result.

Integrality Gap: 
The integrality gap of 𝐿𝑃 (𝐺, 𝑓, 𝑐$ $3'

ℓ ) is ℓ.
For ℓ ≥ 2, consider a multi-graph containing 2 nodes
𝑢, 𝑣 with ℓ edges 𝑒', 𝑒(, … , 𝑒ℓ .
• Demand function is 𝑓({𝑢}) = 𝑓({𝑣}) = 1.
• Cost functions:

𝑐4!
$ = W1 if 𝑖 = 𝑗

0 otherwise
.

• The integral optimal value is 1 but 𝑧56 = 1/ℓ.
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Results Conclusion
Theorem. For ℓ ≥ 2, there is a polynomial-time 
ℓ-approximation algorithm for the Fair 
generalized Steiner network problem with ℓ cost 
functions.

Remarks.
• The algorithm and the guarantee extend to 

the multi-criteria survivable network design 
problem with a skew supermodular cut 
requirement function provided the LP 
relaxation can be solved in polynomial time.

• Fair network design for 2 players has no 
penalty in the approximation factor!

Hardness of Approximation
As a consequence of the hardness of 
approximation of multi-criteria shortest path3, we 
get the following hardness result.

Theorem. The multi-criteria generalized Steiner 
network problem with ℓ cost functions is not 
approximable within log'78ℓ for any 𝜖 > 0, 
unless NP ⊆ DTIME(𝑛9:;<(;:> ?)).
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Iterative Multi-Criteria Network Design Algorithm Outline
Input: A graph 𝐺, a skew supermodular function 𝑓, and a set of ℓ ≥ 2 cost functions 𝑐$ $3'

ℓ .

1. Initialize 𝐹 = ∅.

2. While 𝑓 ≠ 0:

1. Find an optimal extreme point solution 𝑥 to 𝐿𝑃 (𝐺, 𝑓, 𝑐$ $3'
ℓ
).

2. Add all edges with 𝑥4 ≥ 1/ℓ to 𝐹.

3. Update 𝐺 and 𝑓. 

Output: 𝐹.

𝐿𝑃 (𝐺, 𝑓, 𝑐! !"#
ℓ )

Future Work
1. Can we get better approximation algorithms 

using stronger LP relaxations?
2. Can we improve the hardness of approxim-

ation factor to match the upper bound?
3. Can we get better approximation algorithms 

for multi-criteria versions of special 
subclasses of network design problems, e.g., 
uniform 𝑘-connectivity?


