Faster Matchings via Learned Duals

Michael Dinitz¹, Sungjin Im², Thomas Lavastida³, Benjamin Moseley³, Sergei Vassilvitskii⁴

¹Johns Hopkins University, ²UC Merced, ³Carnegie Mellon University, ⁴Google Research

Learning Augmented Algorithms

- Recently there has been significant interest in incorporating machine learning into the design of algorithms
- Predominantly applied to online algorithms
- Potential to speed up combinatorial optimization?

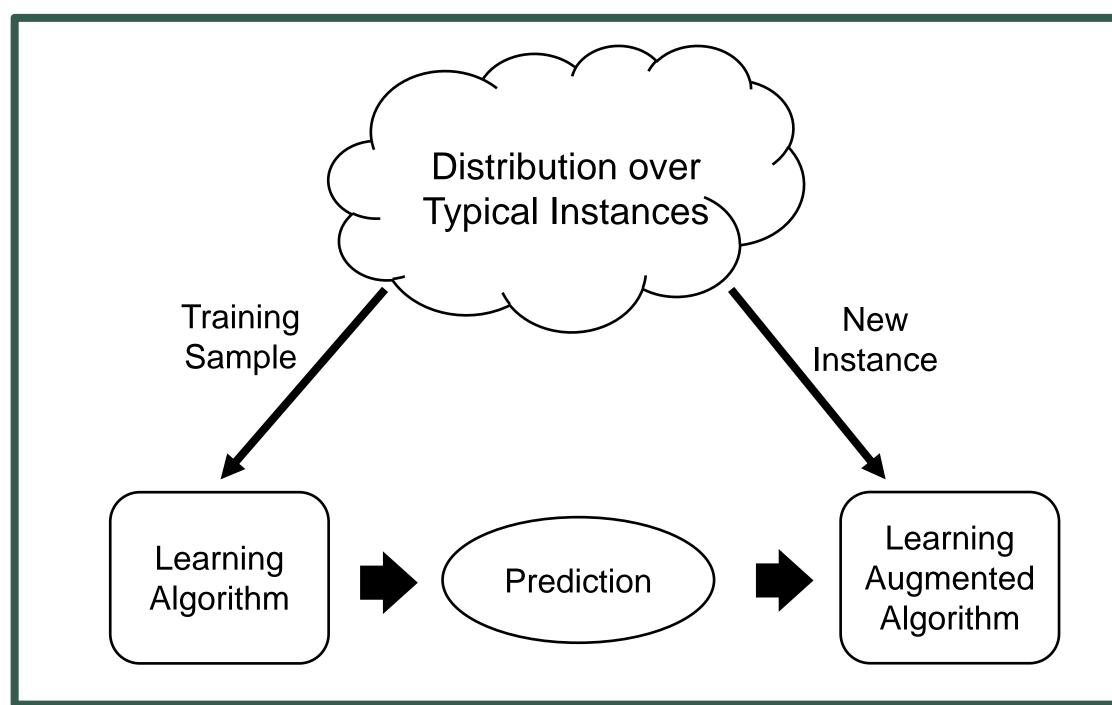


Figure 1: Illustration of model for learning augmented algorithms

Minimum Weight Perfect Matching

- Fundamental combinatorial optimization problem
- Natural place to explore learning augmented algorithms for running time
- Bipartite graph G = (V, E) w/ weights $c \in \mathbb{Z}^E$, |V| = n, |E| = m
- Goal: find a perfect matching M of minimum total weight
- Known that natural linear program is exact

$$\min \sum_{e \in E} c_e x_e$$

$$(P) \sum_{e \in \delta(i)} x_e = 1, \forall i \in V$$

$$x_e \ge 0, \forall e \in E$$

Figure 2:Primal LP for minimum weight perfect matching

$$(D) \qquad \max_{i \in V} y_i$$

$$y_i + y_j \le c_{ij}$$

$$\forall ij \in E$$

Figure 3: Dual LP for minimum weight perfect matching

- Classic Hungarian algorithm solves efficiently in practice
- Faster methods known in theory
- Main question: What to predict and how to measure loss?

Framework: Warm Start Primal-Dual

- Idea: Predict optimal dual variables
- Check optimality with single call to max cardinality matching
- Would like our prediction \hat{y} to be "close" to optimal y^*
- Need to handle 3 challenges:
 - 1. Feasibility \hat{y} may not be feasible for new instance
 - 2. Optimization Should exploit any "closeness" of \hat{y} to y^*
 - 3. Learning Constructing \hat{y} should use past data efficiently

Restoring Feasibility + Optimization

- Suppose that \hat{y} infeasible for new instance
- Make feasible while retaining dual objective value
- Model as linear program with variables δ_i for $i \in V$ representing decrease to \hat{y}_i , i.e., insist $\hat{y} \delta$ is feasible
- Let $r_{ii} = \max{\{\hat{y}_i + \hat{y}_i c_{ii}, 0\}}$

$$\min \sum_{i \in V} \delta_{i}$$

$$(P_{F})$$

$$\delta_{i} + \delta_{j} \geq r_{ij} \ \forall ij \in E$$

$$\delta_{i} \geq 0, \forall i \in V$$

Figure 4: Primal LP for feasibility problem

Figure 5: Dual LP for feasibility problem

Theorem 1: There is a linear time 2-approximation alg. for P_F .

 Once we have a feasible dual solution, we consider the classic Hungarian algorithm to reach optimality

Theorem 2: Given any feasible dual \hat{y} , the Hungarian algorithm has running time $O(m\sqrt{n}||y^* - \hat{y}||_1)$.

- Gives us a loss function to use when learning: $||y^* \hat{y}||_1$.
- Restoring feasibility from an arbitrary prediction only loses O(1) factors to this loss
- Still strongly polynomial time even when predictions are bad

Learning Initial Duals

- Formulate as a PAC learning problem
- Let *D* be an unknown distribution on weight vectors *c*
- Goal: For any $\epsilon, \rho > 0$, use small number of samples from D to learn duals \hat{y} such that:

$$\mathbb{E}_{c \sim D}[\|y^*(c) - \hat{y}\|_1] \le \min_{y} \mathbb{E}_{c \sim D}[\|y^*(c) - y\|_1] + \epsilon$$

with probability $1 - \rho$.

• $y^*(c)$ is an optimal dual solution for weights c

Theorem 3: When $c_{ij} \in [-C, C]$ w.p. 1, then $\tilde{O}\left(n^3C^2\epsilon^{-2}\log\frac{1}{\rho}\right)$ samples are sufficient to learn \hat{y} .

Follows from a pseudo-dimension argument

Experiments

- Goal is to confirm theory show that when there is something to learn, learned duals outperform the Hungarian algorithm
- Construct distributions over instances using datasets taken from UCI Machine Learning repository
- Assume data belongs to \mathbb{R}^d , construct distribution as follows:
 - 1. Randomly partition data into two sets L, R
 - 2. Run k-means clustering on each of L and R
 - 3. To sample an instance, sample one point from each cluster
 - 4. Set c_{ij} to be the distance between the points sampled from cluster i and cluster j on each side, respectively
- We set k = 500 and use 20 samples for learning initial duals
- Report the average runtime on 10 test instances.

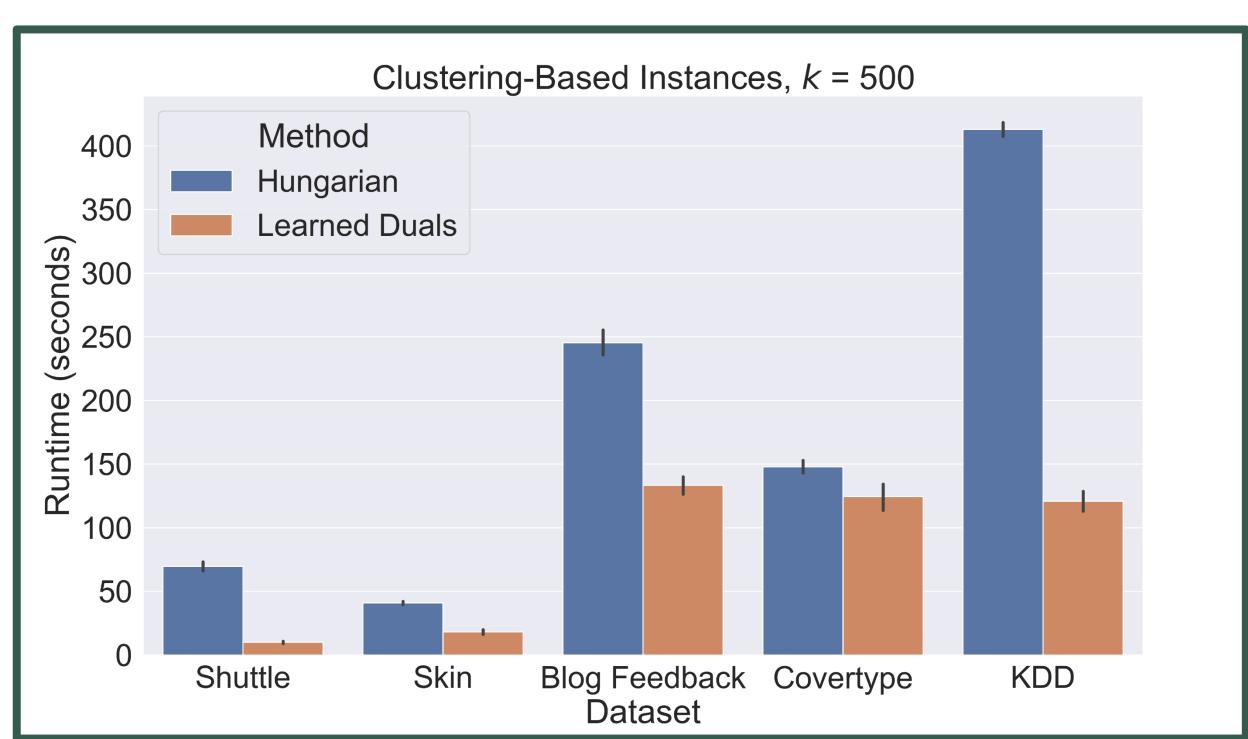


Figure 6: Experimental results on UCI datasets. Note that we typically see > 2X speedup when using learned duals over the Hungarian algorithm