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Learning Augmented Algorithms Framework: Warm Start Primal-Dual

» |dea: Predict optimal dual variables
* Check optimality with single call to max cardinality matching
* Would like our prediction y to be “close” to optimal y*

* Need to handle 3 challenges:
1. Feasibility — ¥ may not be feasible for new instance

* Recently there has been significant interest in incorporating
machine learning into the design of algorithms

* Predominantly applied to online algorithms
* Potential to speed up combinatorial optimization?

2. Optimization — Should exploit any “closeness” of y to y*
3. Learning — Constructing y should use past data efficiently
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Figure 1: lllustration of model for learning augmented algorithms
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Minimum Weight Perfect Matching

« Fundamental combinatorial optimization problem

* Natural place to explore learning augmented algorithms for
running time

» Bipartite graph ¢ = (V,E) w/ weights ¢ € ZE, |[V| =n, |E| = m
» Goal: find a perfect matching M of minimum total weight
* Known that natural linear program Is exact
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Figure 4: Primal LP for feasibility problem Figure 5: Dual LP for feasibility problem

Theorem 1: There Is a linear time 2-approximation alg. for Pg.

* Once we have a feasible dual solution, we consider the classic
Hungarian algorithm to reach optimality
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Theorem 2: Given any feasible dual y, the Hungarian algorithm

has running time 0(m+/n|ly* — 9|1).

Figure 2:Primal LP for minimum weight
perfect matching

Figure 3: Dual LP for minimum weight perfect

matching * Gives us a loss function to use when learning: ||y* — V||;.

» Restoring feasibility from an arbitrary prediction only loses
0 (1) factors to this loss

 Still strongly polynomial time even when predictions are bad

» Classic Hungarian algorithm solves efficiently in practice
» Faster methods known in theory
* Main question: What to predict and how to measure loss?

Learning Initial Duals

 Formulate as a PAC learning problem
* Let D be an unknown distribution on weight vectors c

 Goal: Forany ¢,p > 0, use small number of samples from D to
learn duals y such that:

*C~D[Hy*(c) — )7”1] < myin *C~D[”y*(c) — }’\|1] T €

with probability 1 — p.
* y*(c) Is an optimal dual solution for weights ¢

Theorem 3: When ¢;; € [-C,C] w.p. 1, then 0 (nBCZE_Z 108%)

samples are sufficient to learn .

* Follows from a pseudo-dimension argument

Experiments

» Goal is to confirm theory — show that when there is something
to learn, learned duals outperform the Hungarian algorithm

» Construct distributions over instances using datasets taken
from UCI Machine Learning repository

» Assume data belongs to R%, construct distribution as follows:
1. Randomly partition data into two sets L, R
2. Run k-means clustering on each of L and R
3. To sample an instance, sample one point from each cluster
4. Set ¢;; to be the distance between the points sampled from

cluster i and cluster j on each side, respectively
 We set k = 500 and use 20 samples for learning initial duals

* Report the average runtime on 10 test instances.
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Figure 6: Experimental results on UCI datasets. Note that we typically see > 2X
speedup when using learned duals over the Hungarian algorithm




