
Learning Augmented Algorithms

• Idea: Predict optimal dual variables

• Check optimality with single call to max cardinality matching

• Would like our prediction ො𝑦 to be “close” to optimal 𝑦∗

• Need to handle 3 challenges:

1. Feasibility – ො𝑦 may not be feasible for new instance

2. Optimization – Should exploit any “closeness” of ො𝑦 to 𝑦∗

3. Learning – Constructing ො𝑦 should use past data efficiently

• Recently there has been significant interest in incorporating 

machine learning into the design of algorithms

• Predominantly applied to online algorithms

• Potential to speed up combinatorial optimization?
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Faster Matchings via Learned Duals

Minimum Weight Perfect Matching

• Fundamental combinatorial optimization problem

• Natural place to explore learning augmented algorithms for 

running time

• Bipartite graph 𝐺 = 𝑉, 𝐸 w/ weights 𝑐 ∈ ℤ𝐸, 𝑉 = 𝑛, 𝐸 = 𝑚

• Goal: find a perfect matching 𝑀 of minimum total weight

• Known that natural linear program is exact

Experiments

Framework: Warm Start Primal-Dual

• Suppose that ො𝑦 infeasible for new instance

• Make feasible while retaining dual objective value

• Model as linear program with variables 𝛿𝑖 for 𝑖 ∈ 𝑉
representing decrease to ො𝑦𝑖, i.e., insist ො𝑦 − 𝛿 is feasible

• Let 𝑟𝑖𝑗 = max{ ො𝑦𝑖 + ො𝑦𝑗 − 𝑐𝑖𝑗 , 0}

Restoring Feasibility + Optimization

• Formulate as a PAC learning problem

• Let 𝐷 be an unknown distribution on weight vectors 𝑐

• Goal: For any 𝜖, 𝜌 > 0, use small number of samples from 𝐷 to 

learn duals ො𝑦 such that:

𝔼𝑐~𝐷 𝑦∗ 𝑐 − ො𝑦 1 ≤ min
𝑦

𝔼𝑐~𝐷 𝑦∗ 𝑐 − 𝑦 1 + 𝜖

with probability 1 − 𝜌.

• 𝑦∗(𝑐) is an optimal dual solution for weights 𝑐
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Figure 1: Illustration of model for learning augmented algorithms

min෍

𝑒∈𝐸

𝑐𝑒𝑥𝑒

෍

𝑒∈𝛿(𝑖)

𝑥𝑒 = 1, ∀𝑖 ∈ 𝑉

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

(𝑃)

Figure 2:Primal LP for minimum weight 

perfect matching

max෍

𝑖∈𝑉

𝑦𝑖

𝑦𝑖 + 𝑦𝑗 ≤ 𝑐𝑖𝑗
∀𝑖𝑗 ∈ 𝐸

(𝐷)

Figure 3: Dual LP for minimum weight perfect 

matching

• Classic Hungarian algorithm solves efficiently in practice

• Faster methods known in theory

• Main question: What to predict and how to measure loss?

min෍

𝑖∈𝑉

𝛿𝑖

𝛿𝑖 + 𝛿𝑗 ≥ 𝑟𝑖𝑗 ∀𝑖𝑗 ∈ 𝐸

𝛿𝑖 ≥ 0, ∀𝑖 ∈ 𝑉

(𝑃𝐹)

Figure 4: Primal LP for feasibility problem

max෍

𝑒∈𝐸

𝑟𝑒𝛾𝑒

෍

𝑒∈𝛿(𝑖)

𝛾𝑒 ≤ 1, ∀𝑖 ∈ 𝑉

𝛾𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

(𝐷𝐹)

Figure 5: Dual LP for feasibility problem

Theorem 1: There is a linear time 2-approximation alg. for 𝑃𝐹.

• Once we have a feasible dual solution, we consider the classic 

Hungarian algorithm to reach optimality

Theorem 2: Given any feasible dual ො𝑦, the Hungarian algorithm 

has running time 𝑂 𝑚 𝑛 𝑦∗ − ො𝑦 1 .

• Gives us a loss function to use when learning: 𝑦∗ − ො𝑦 1.

• Restoring feasibility from an arbitrary prediction only loses 

𝑂(1) factors to this loss

• Still strongly polynomial time even when predictions are bad

Theorem 3: When 𝑐𝑖𝑗 ∈ [−𝐶, 𝐶] w.p. 1, then ෨𝑂 𝑛3𝐶2𝜖−2 log
1

𝜌

samples are sufficient to learn ො𝑦.

• Follows from a pseudo-dimension argument

• Goal is to confirm theory – show that when there is something

to learn, learned duals outperform the Hungarian algorithm

• Construct distributions over instances using datasets taken

from UCI Machine Learning repository

• Assume data belongs to ℝ𝑑, construct distribution as follows:

1. Randomly partition data into two sets 𝐿, 𝑅

2. Run 𝑘-means clustering on each of 𝐿 and 𝑅

3. To sample an instance, sample one point from each cluster

4. Set 𝑐𝑖𝑗 to be the distance between the points sampled from 

cluster 𝑖 and cluster 𝑗 on each side, respectively

• We set 𝑘 = 500 and use 20 samples for learning initial duals

• Report the average runtime on 10 test instances.

Figure 6: Experimental results on UCI datasets.  Note that we typically see > 2X 

speedup when using learned duals over the Hungarian algorithm


