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Mixed-Integer MPC for Real-Time Decision Making

decision making.
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MI-MPC provides a general-purpose
modeling framework for real-time

We are particularly interested in an M-
MPC formulation of a high-level motion
planning task for an autonomous vehicle,
Including discrete decisions resulting from
lane changes, static and dynamic ~

« Switches In system dynamics, e.g., contacts
« Discrete decisions, e.g., pass or stay in lane
* Quantized decisions, e.g., on/off actuation 0
 Disjoint constraint sets, e.g., obstacle avoidance ,,
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The MI-MPC framework solves an MIQP "
problem at every sampling time instant.

For example, using big-M formulation and 4 binary | i
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Branch-and-Bound Algorithm for MIQP
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« Convex QP relaxations solved to obtain lower bounds (LB)
« Each integer-feasible solution forms an upper bound (UB) for the MIQP

* A node can be pruned due to LB > UB (Py) or infeasibility (P,)

Early termination of QP solvers in B&B: aim to
prune node without need to solve convex QP

* |f dual feasible objective y(:) > UB,
then primal optimal objective ¢* > UB:

D, A) < P* < ¢o* < Pz, y)

* Terminate the QP solver before convergence.

 Also effective in detecting primal infeasibility.

Infeasible IPM: Projection to Dual Feasibility

Equality-constrained optimization for minimum-norm projection on constraint

AMNAp

But projection does not guarantee nonnegativity of Lagrange multipliers, i.e., u=0
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Proposed approach: modified optimization problem for projection on constraint
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Solve equality-constrained optimization problem tQ compute, projection step
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Is equivalent to solving reduced KKT system to compute search direction Az

which is used to compute projection step for Lagrange multipliers (Au*, A2%):

Wk = diag (w") and wf = Z—z > 0
U /o
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Indirectly enforces positivity constraints u>0
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=) Active inequality constraints:

s;—»0and ;> 0= w; = %—> 0 (small penalty)
Inactive inequality constraints:
g~ 0ands; >0= w; = %—> o (large penalty)

Projection corresponds to IPM iteration with

= different right-hand side: obtain dual

feasibility while maintaining optimality
conditions

We can reuse the KKT matrix factorization
=) between IPM iterations and projection steps
for computational efficiency
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® Problem.: infeasible IPM iterations
generally do not satisfy dual feasibility
until convergence

]T M ® Proposed solution: computationally

A efficient projection to obtain dual

feasible solution guess for early
termination of infeasible IPM
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“+ Certificate of primal infeasibility (i.e.,
. unboundedness of dual) the following
set of equations is strictly infeasible

_ Continue QP_ NoO Y > UB AND
Gz < 9, Iz = f ? . iterations ... dual feasible

if and only if there exists a pair (u ,1)
such that (Farkas’ lemma)

G a+F " A=0, g'a+f'A<0, >0

* |nstead, our proposed early termination

technique can be used for infeasibility
detection and requires limited
computational cost (projection based
on reuse of KKT matrix factorization).

« Intuition behind using early

termination for infeasibility
detection:

.| Proposition 4.3: If the sequence of IPM iterates
: . T :
(2 R AR M) ) osatisfy pf st < 10" 50 and ||k — oo,
' then the dual objective 1 (u”*, \F) — oo. :
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Compute dual feasible solution guess

\

Evaluate dual objective value i

Early termination of
convex QP solver

2 oy

Optimal objective value is No feasible solution
larger than upper bound exists to convex QP

Algorithm 1 Early termination for IPM in B&B method.
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Input: Warm start {(2°, 1, A%, s") }, tol, and UB.

if ¥(u*, \¥) > UB & dual_feasible then
break while loop. > Early termination
else if (3%, \*) > UB then
Compute projection step (A, AA) in (13).
p—p*+Ap, A X+ A, and
Ty 1';: A+ G'; g+ hy,.
if >0 & |ry|| < tol then
TR TR LR l;‘l Ty, and
dual.feasible « 1.
if (1%, \¥) > UB then
break while loop. © Early termination
end if
end if
end if

Perform an IPM iteration (8), e.g., see [18].

1%: end while

Simulation Results: Real-Time Vehicle Decision Making
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» Early termination
reduces total number
of QP iterations by
42%.
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Early Terminated versus Fully Solved QPs
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happens often, 36% of <™ ||
QPs are early terminated 0 T e g e beessesons
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» Early termination
benefits from warm
starting IPM and takes 0, » | | » » \ \ |
less OP iterations.

# QP iters

Infeasibility Detection

Number of IPM [terations for Certificate Versus Early Termination With and Without Warm Starting

QP#1 | QP#2 | QP # 3
Certificate of primal infeasibility 40 45 38
Early termination: cold started 10 12 10
Early termination: warm started 0 0 11

» Early termination requires considerably less IPM iterations than the
computation of a certificate of infeasibility.

» Warm starting can reduce the number of IPM iterations further and it can
lead to immediate termination, 1.e., termination at O iterations.

Conclusions

An efficient early termination strategy based on a projection step tailored to IPMs,
In order to reduce the computational cost within B&B method in solving MI-MPC.

on TEE e ———————————————————————————————

/’éarly termination of QP S\ l,/F;ll\l;II%/t’;er;rggnna;tlon IS performed by using Newton-type,

solvers in MI-MPC works _ o
well in @ reuses KKT matrix factorizations for
computational efficiency;

@ terminating QPs whose o _ _ _
@ Intuitively guarantees the inequality constraint
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