

Early Termination of Convex QP Solvers in Mixed-Integer **Model Predictive Control for Real-Time Decision Making**

Integer Programming and Combinatorial Optimization 2021

Jiaming Liang (Georgia Tech), Stefano Di Cairano, Rien Quirynen

Mixed-Integer MPC for Real-Time Decision Making

MI-MPC provides a general-purpose modeling framework for real-time decision making.

We are particularly interested in an MI-MPC formulation of a high-level motion planning task for an autonomous vehicle, including discrete decisions resulting from lane changes, static and dynamic obstacles

- Switches in system dynamics, e.g., contacts
- Discrete decisions, e.g., pass or stay in lane
- Quantized decisions, e.g., on/off actuation
- Disjoint constraint sets, e.g., obstacle avoidance $y_{i(i)}$

For example, using big-M formulation and 4 binary variables

Branch-and-Bound Algorithm for MIQP

- Convex QP relaxations solved to obtain lower bounds (LB)
- Each integer-feasible solution forms an upper bound (UB) for the MIQP solution
- A node can be pruned due to LB > UB (P_6) or infeasibility (P_4)

Early termination of QP solvers in B&B: aim to prune node without need to solve convex QP

- If dual feasible objective $\psi(\cdot) > UB$, then primal optimal objective $\phi^* > UB$: $\psi(\mu, \lambda) \le \psi^{\star} \le \phi^{\star} \le \phi(\boldsymbol{x}, \boldsymbol{y})$
- Terminate the QP solver before convergence.
- Also effective in detecting primal infeasibility.

QP Formulations and Infeasible IPM Solver

 $\mu \geq 0$,

Infeasible IPM: Newton-type iteration

$$egin{bmatrix} H & F^ op & G^ op \ F & 0 & 0 \ G & 0 & -W^k \end{bmatrix} egin{bmatrix} \Delta oldsymbol{z}^k \ \Delta \lambda^k \ \Delta \mu^k \end{bmatrix} = -egin{bmatrix} r_k^k \ r_\lambda^k \ ar{r}_\mu^k \end{bmatrix}$$

- Problem: infeasible IPM iterations generally do not satisfy dual feasibility until convergence
- $\max_{\mu,\lambda} \quad \psi(\mu,\lambda) := -\frac{1}{2} \|\hat{h}(\mu,\lambda)\|_{Q^{-1}}^2 \begin{bmatrix} g \\ f \end{bmatrix}^\top \begin{bmatrix} \mu \\ \lambda \end{bmatrix} \quad \text{efficient projection to obtain dual}$ efficient projection to obtain dual feasible solution guess for early termination of infeasible IPM

Infeasible IPM: Projection to Dual Feasibility

Equality-constrained optimization for minimum-norm projection on constraint

$$\min_{\Delta\lambda,\Delta\mu} \quad \frac{1}{2} \|\Delta\lambda\|^2 + \frac{1}{2} \|\Delta\mu\|^2$$
, s.t. $F_{m y}^{ op} \Delta\lambda + G_{m y}^{ op} \Delta\mu = -r_{m y}^k$

But projection does not guarantee nonnegativity of Lagrange multipliers, i.e., $\mu \ge 0$

Proposed approach: modified optimization problem for projection on constraint

Early Termination of IPM: Infeasibility detection

Certificate of primal infeasibility (i.e., unboundedness of dual) the following set of equations is strictly infeasible

$$Gz < g, \quad Fz = f,$$

if and only if there exists a pair $(\tilde{\mu}, \tilde{\lambda})$ such that (Farkas' lemma)

$$G^{\top}\tilde{\mu} + F^{\top}\tilde{\lambda} = 0, \quad g^{\top}\tilde{\mu} + f^{\top}\tilde{\lambda} < 0, \quad \tilde{\mu} > 0$$

- Instead, our proposed early termination technique can be used for infeasibility detection and requires limited computational cost (projection based on reuse of KKT matrix factorization).
- Intuition behind using early termination for infeasibility detection:

Proposition 4.3: If the sequence of IPM iterates $\{(\boldsymbol{z}^k, \mu^k, \lambda^k, s^k)\}$ satisfy $\mu^{k^\top} s^k \leq \mu^{0^\top} s^0$ and $\|\mu^k\| \to \infty$, then the dual objective $\psi(\mu^k, \lambda^k) \to \infty$.

Simulation Results: Real-Time Vehicle Decision Making

- Early termination happens often, 36% of QPs are early terminated
- Early termination benefits from warm starting IPM and takes less QP iterations.

Infeasibility Detection

Number of IPM Iterations for Certificate Versus Early Termination With and Without Warm Starting

	QP # 1	QP # 2	QP # 3
Certificate of primal infeasibility	40	45	38
Early termination: cold started	10	12	10
Early termination: warm started	0	0	11

- > Early termination requires considerably less IPM iterations than the computation of a certificate of infeasibility.
- > Warm starting can reduce the number of IPM iterations further and it can lead to immediate termination, i.e., termination at 0 iterations.

Conclusions

An efficient early termination strategy based on a projection step tailored to IPMs, in order to reduce the computational cost within B&B method in solving MI-MPC.

Early termination of QP solvers in MI-MPC works well in

- terminating QPs whose objective value > UB;
- detecting infeasible
- Early termination is performed by using Newton-type. IPM iterations
 - reuses KKT matrix factorizations for computational efficiency;
 - intuitively guarantees the inequality constraint; i.e., positivity in μ ;
 - projection also makes progress towards convergence

© MERL