Proximity in Concave Integer Quadratic Programming

Alberto Del Pia and Mingchen Ma

University of Wisconsin-Madison

Proximity in Integer Optimization

- Let x^{c} be an optimal solution to
$\min \{c x \mid A x \leq b\}$.
- Let x^{d} be an optimal solution to $\min \left\{c x \mid A x \leq b, x \in \mathbb{Z}^{n}\right\}$.
- An important question is to ask if there is an upper bound for $\left\|x^{c}-x^{d}\right\|_{\infty}$.

Theorem [Cook, Gerards, Schrijver and Tardos, 1986]

Denote by Δ, the largest absolute value of the subdeterminant of A.

- Let x^{c} be any optimal solution to (LP), then there is an optimal solution x^{d} to (IP) such that $\left\|x^{c}-x^{d}\right\|_{\infty} \leq n \Delta$.
- Let x^{d} be any optimal solution to (IP), then there is an optimal solution x^{c} to (LP) such that $\left\|x^{c}-x^{d}\right\|_{\infty} \leq n \Delta$.
- $n \Delta$ is still valid when minimize a convex separable quadratic function [Granot et al, 1990].
- $n \Delta$ is valid for a general convex separable function [Hochbaum et al,1990] [Werman et al, 1991].
- New upper bound $p \Delta$ for mixed-integer linear programming [Paat, Weismantel, and Weltge, 2018].
Question: Do proximity phenomena only occur in the presence of convexity?

Concave Integer Quadratic
Programming
$\min \sum_{i=1}^{k}-q_{i} x_{i}^{2}+h^{T} x$
s.t. $A x \leq b$
$x \in \mathbb{Z}^{n}$.
$\min \sum_{i=1}^{k}-q_{i} x_{i}^{2}+h^{T} x$
s.t. $A x \leq b$
$x \in \mathbb{R}^{n}$

- $q_{i} \geq 0, A$ integral.
- Do proximity results happen for (IQP)?

> A Counter Example

$$
\begin{aligned}
& \min f(x)=-\left(x-\frac{1}{4}\right)^{2} \\
& \text { s.t. }-t \leq x \leq t+\frac{3}{4} \\
& \quad x \in \mathbb{Z}
\end{aligned}
$$

- t integer, $n=1, \Delta=1$.
- $x^{c}=t+\frac{3}{4}, x^{d}=-t$.
- No proximity results if we consider optimal solutions.
ϵ-approximate solution

Definition ϵ-approximate solution
Let x^{*} be an optimal solution. For $\epsilon \in[0,1], x^{\diamond}$ is an ϵ-approximate solution if
$\operatorname{obj}\left(x^{\diamond}\right)-\operatorname{obj}\left(x^{*}\right) \leq \epsilon\left(\operatorname{obj}_{\text {max }}-\operatorname{obj}\left(x^{*}\right)\right)$.

- obj (\cdot) : objective function value.
- obj $\mathrm{max}^{\max }$: maximum value of $\mathrm{obj}(\mathrm{x})$ over the feasible region.
- Denition used in the literature from the 80s.
- Preserved under dilation and translation of obj. - Insensitive to change of basis.

Main Result

- We show that proximity phenomena still occur for concave integer quadratic programming. - But only if we consider approximate solutions.

Theorem (Proximity in Concave Integer Quadratic Programming)
Consider a problem (IQP), and the corresponding continuous problem (QP). Suppose that both problems have an optimal solution. Then:

- Let x^{c} be any optimal solution to (QP). Then, $\forall \epsilon>0$, there is an ϵ-approximate solution x^{*} to (IQP) such that

$$
\left\|x^{*}-x^{c}\right\|_{\infty} \leq n \Delta\left(\frac{10 \Delta}{\epsilon}+1\right)^{k}
$$

- Let x^{d} be any optimal solution to (IQP). Then, $\forall \epsilon>0$, there is an ϵ-approximate solution x^{\star} to (QP) such that

$$
\left\|x^{\star}-x^{d}\right\|_{\infty} \leq n \Delta\left(\frac{10 \Delta}{\epsilon}+1\right)^{k}
$$

- When $\left|x_{i}^{*}-x_{i}^{d}\right|$ is large for $i \in[k], x^{*}$ is a good approximation
- Based on x^{c} and x^{d}, we can construct a path with at most $k+1$ points inside the polyhedron.
- The length of the path can be bounded using n, Δ and ϵ.
- Either $x^{*}=x^{d}$ or x^{*} is near some point x^{ℓ} in the path.
x^{\star} can be found using x^{c}, x^{d}, x^{*}, and $\left\|x^{d}-x^{\star}\right\|_{\infty}=\left\|x^{c}-x^{*}\right\|_{\infty}$.

Lower Bound for Proximity Result

- We use the following two quantities to describe the lower bound for proximity results.
$\delta_{\epsilon}^{*}:=\min \left\{| | x^{c}-x^{*} \|_{\infty} \mid x^{*} \epsilon\right.$-approx. to (IQP), x^{c} opt. to (QP) $\}$,
$\delta_{\epsilon}^{\star}:=\min \left\{\left\|x^{\star}-x^{d}\right\|_{\infty} \mid x^{d}\right.$ opt. to (IQP), $x^{\star} \epsilon$-approx. to (QP) $\}$.

- We use \bar{P} to obtain lower bounds for δ_{ϵ}^{*} and $\delta_{\epsilon}^{\star}$.
- $\delta_{\epsilon}^{*} \in \Omega\left(\frac{1}{\epsilon}+n \Delta\right)$.
- $\delta_{\epsilon}^{\star} \in \Omega\left(\frac{n \Delta}{\epsilon}\right)$.
- $n \Delta$ bound for linear integer programming is
asymptotically best possible according to \bar{P}.

