Proximity in Concave Integer Quadratic Programming

Alberto Del Pia and Mingchen Ma

University of Wisconsin-Madison

Proximity in Integer Optimization

- Let x^c be an optimal solution to $\min\{cx \mid Ax \le b\}.$
- Let x^d be an optimal solution to $\min\{cx \mid Ax \le b, x \in \mathbb{Z}^n\}.$
- An important question is to ask if there is an upper bound for $||x^c - x^d||_{\infty}$.

Theorem [Cook, Gerards, Schrijver and Tardos, 1986]

Denote by Δ , the largest absolute value of the subdeterminant of A.

- Let x^c be any optimal solution to (LP), then there is an optimal solution x^d to (IP) such that $||x^c - x^d||_{\infty} \leq n\Delta$.
- Let x^d be any optimal solution to (IP), then there is an optimal solution x^c to (LP) such that $||x^c - x^d||_{\infty} \leq n\Delta$.
- $n\Delta$ is still valid when minimize a convex separable quadratic function [Granot et al, 1990].
- $n\Delta$ is valid for a general convex separable function [Hochbaum et al,1990] [Werman et al, 1991|.
- New upper bound $p\Delta$ for mixed-integer linear programming [Paat, Weismantel, and Weltge, 2018].

Question: Do proximity phenomena only occur in the presence of convexity?

Concave Integer Quadratic Programming

$$\min \sum_{i=1}^{k} -q_i x_i^2 + h^T x$$
s.t. $Ax \le b$

$$x \in \mathbb{Z}^n.$$
(IQP)

$$\min \sum_{i=1}^{k} -q_i x_i^2 + h^T x$$

$$\text{s.t. } Ax \le b$$

$$x \in \mathbb{R}^n.$$
(QP)

- $\bullet q_i \geq 0$, A integral.
- Do proximity results happen for (IQP)?

A Counter Example

$$\min f(x) = -\left(x - \frac{1}{4}\right)^2$$

s.t. $-t \le x \le t + \frac{3}{4}$
 $x \in \mathbb{Z}$.

- t integer, $n=1, \Delta=1$.
- $x^c = t + \frac{3}{4}, x^d = -t.$
- No proximity results if we consider optimal solutions.

ϵ -approximate solution

Definition ϵ -approximate solution

Let x^* be an optimal solution. For $\epsilon \in [0,1]$, x^{\diamond} is an ϵ -approximate solution if

$$\operatorname{obj}(x^{\diamond}) - \operatorname{obj}(x^{*}) \leq \epsilon(\operatorname{obj}_{\max} - \operatorname{obj}(x^{*})).$$

- \bullet obj(\cdot): objective function value.
- obj_{max} : maximum value of obj(x) over the feasible region.
- Denition used in the literature from the 80s.
- Preserved under dilation and translation of obj.
- Insensitive to change of basis.

Main Result

- We show that proximity phenomena still occur for concave integer quadratic programming.
- But only if we consider approximate solutions.

Theorem (Proximity in Concave Integer Quadratic Programming)

Consider a problem (IQP), and the corresponding continuous problem (QP). Suppose that both problems have an optimal solution. Then:

• Let x^c be any optimal solution to (QP). Then, $\forall \epsilon > 0$, there is an ϵ -approximate solution x^* to (IQP) such that

$$||x^* - x^c||_{\infty} \le n\Delta \left(\frac{10\Delta}{\epsilon} + 1\right)^k.$$

• Let x^d be any optimal solution to (IQP). Then, $\forall \epsilon > 0$, there is an ϵ -approximate solution x^* to (QP) such that

$$||x^* - x^d||_{\infty} \le n\Delta \left(\frac{10\Delta}{\epsilon} + 1\right)^k.$$

- When $|x_i^* x_i^d|$ is large for $i \in [k]$, x^* is a good approximation
- ullet Based on x^c and x^d , we can construct a path with at most k+1 points inside the polyhedron.
- The length of the path can be bounded using n, Δ and ϵ .
- Either $x^* = x^d$ or x^* is near some point x^ℓ in the
- x^* can be found using x^c, x^d, x^* , and $||x^d - x^*||_{\infty} = ||x^c - x^*||_{\infty}.$

Lower Bound for Proximity Result

 We use the following two quantities to describe the lower bound for proximity results.

 $\delta_{\epsilon}^* := \min\{||x^c - x^*||_{\infty}|x^* \epsilon \text{-approx. to (IQP)}, x^c \text{ opt. to (QP)}\},$ $\delta_{\epsilon}^{\star} := \min\{||x^{\star} - x^d||_{\infty}|x^d \text{ opt. to (IQP)}, x^{\star} \epsilon \text{-approx. to (QP)}\}.$

- We use P to obtain lower bounds for δ_{ϵ}^* and δ_{ϵ}^* .
- $\delta_{\epsilon}^* \in \Omega(\frac{1}{\epsilon} + n\Delta)$.
- $\delta_{\epsilon}^{\star} \in \Omega(\frac{n\Delta}{\epsilon})$.
- ullet $n\Delta$ bound for linear integer programming is asymptotically best possible according to P.

