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Proximity in Integer Optimization

e Let ¢ be an optimal solution to
min{cx | Ax < b}.

o Let 2% be an optimal solution to
min{cx | Ax < b,x € Z"}.

e An important question is to ask if there is an
upper bound for [|2¢ — 29w

Theorem [Cook, Gerards,
Schrijver and Tardos, 1986]

Denote by /\, the largest absolute value of the
subdeterminant of A.

o Let 2¢ be any optimal solution to (LP), then
there is an optimal solution z? to (IP) such
that ||z — 2%|e < nA.

o Let 2¢ be any optimal solution to (IP), then
there is an optimal solution z¢ to (LP) such
that ||z¢ — 2%||c0 < RA.

e n/\ is still valid when minimize a convex
separable quadratic function |Granot et al, 1990].

e n/\ is valid for a general convex separable
function [Hochbaum et al,1990]|Werman et al,
1991].

e New upper bound p/\ for mixed-integer linear

programming |Paat, Weismantel, and Weltge,
2018|.

Question: Do proximity phenomena only occur
in the presence of convexity?

Concave Integer Quadratic
Programming

k
min Y —qixs + h'z
i=1
s.b. Ax < b (1QP)
x e Z".

k
min Y —qx: +h'x
i=1
s.b. Ax < b (QP)
r € R"
eq; > 0, A integral.

e Do proximity results happen for (IQP)?

A Counter Example

ot integer, n=1, A= 1.

® ¢ :t+%,xd = —1.

e No proximity results if we consider optimal
solutions.

e-approximate solution

Definition e-approximate solution

Let x* be an optimal solution. For ¢ € |0, 1], z°
is an e-approximate solution if

bj(2°) — 0bj(z") < €(0bjy — obj(a*)).

® 0bj(+): objective function value.

Dimax:. Maximum value of obj(x) over the feasible
region.

e Denition used in the literature from the 80s.

e Preserved under dilation and translation of obj.

e Insensitive to change of basis.

Main Result

e We show that proximity phenomena still occur for concave integer quadratic programming.

e But only if we consider approximate solutions.

Theorem (Proximity in Concave Integer Quadratic Programming)

Consider a problem (IQP), and the corresponding continuous problem (QP). Suppose that both problems
have an optimal solution. Then:

o Let 2¢ be any optimal solution to (QP). Then, V € > 0, there is an e-approximate solution z* to (IQP)
such that

108 "
Hm*—azc\\mgnA( | 1) .

€

o Let 29 be any optimal solution to (IQP). Then, V € > 0, there is an e-approximate solution z* to (QP)
such that

10N \"
Hx*—deOOgnA( | 1) .
€

o When |z} — 2| is large for i € [k], 2* is a good
approximation

e Based on z¢ and 2% we can construct a path with

at most £ + 1 points inside the polyhedron. . .
e The length of the path can be bounded using n, A . .
and €.

o Either 2* = 2% or x* is near some point z' in the

path. *
d

e £ can be found using z¢ x x*, and .

29 = 2*|oc = [|2° — 2|

Lower Bound for Proximity Result

® We use the following two quantities to describe the
lower bound for proximity results.
0. = min{||z° — x"|||x" e-approx. to (IQP), z opt. to (QP)},
0% = min{||z* — 29| |z opt. to (IQP), z* e-approx. to (QP)}.

v=(t+(n—1)8A,8,...,5)
A

» We use P to obtain lower bounds for * and 6.

o 0F € Q1 4+ nA).

0 5F € Q1B

e n/\ bound for linear integer programming is
asymptotically best possible according to P.



