Memory-efficient approximation algorithms for MAX-CuT and MAX-K-CUT

Nimita Shinde *

ITB-Monash Research Academy

Vishnu Narayanan

°Indian Institute of Technology Bombay

James Saunderson 3

3Monash University

MAXCUT and MAX-K-CUT

Max-k-Cut Partition nodes into k
sets so that the weights of the
edges crossing the partition is
maximized

MaxCut Partition nodes into two
sets so that the weights of the
edges crossing the partition is
maximized

% e

—
-
—
—
-
—
-
—
—
-
—
—_
-
—
-
—
o — 1
. —
.=

SDP Relaxation:
max (cLqg, X) max
s.t. diag(X) =1,

SDP relaxation:
<CkLg, X>

1

diag(X) =1,X =0

Decision variable X uses n” storage!
00 large for large-scale problems

First aim: Provide a low-memory representation
of the decision variable

SDP-based rounding method

Generate
sample(s) z;'s with
covariance X

Graph Generate a solution
X to the
SDP relaxation

Round the | CUT
sample(s)

Generation of a cut only requires z ~ N (0, X)!

If opt Is the optimal cut value

Goemans-Williamson (GW) rounding: Frieze-Jerrum (FJ) rounding:
E|CUT] > agwopt |2 EIk-CUT| > agopt [1]

Second aim: Provide a low-memory implementation of
the GW and FJ rounding that preserves
approximation guarantees

Gaussian Sampling: A way to achieve our first aim

Nonnegative weighted
sum of samples

Nonnegative weighted
sum of matrices

<

" Let z ~ N(0,X;) and hy ~ N (0, Hy)
-]CZt_H:\/1—’)/tZt—F\/’}/tOdChthrCNN(O,I),theﬂ
J {ztﬂzﬁl} = (1 — %)Xt + v = Xy

Frank-Wolfe with Gausssian Sampling (FW-GS) [3]

Low-memory implementation of FJ rounding: Our
second aim (Part 2)

* Frank-Wolfe update step
Xy = (1 =) Xy +vHy
= Rank of update direction H; at most one for the problem

. d
X:Tr(-%%%z,Xio g([(Bi X)liz1)

Not necessary to compute X, explicitly
it we use Gaussian sampling!

Gaussian sample z: a low-memory representation of X

Low-memory implementation of GW rounding: Our
second aim (Part 1)

Key observation: If the
rounding is applied to the
new relaxation

EIk-CUT| > agopt

A new relaxation of Max-k-Cut
max (cpLg, X)

- k-1

diag(X) =1, X =0

(2,7) € E,i < 7,

Max-k-Cut using FW-GS:
EICUT,| > ag(1 — 4e)opt

Implementing FW-GS for MAXCuUT with e = 0.1

Step 2

Spp Penalize Frank-VWolfe Geﬁ(rg ta/)
the constraints that updates v ’

Step 1

Round the [CUT,

in the input SDP the sample(s) Vgét?h‘g/;g? sample(s
z ~ N0, X,)

Note: X, = 0 is O(e)-feasible solution to
input SDP with d linear constraints

Key features: Uses O(n + d) memory, preserves convergence
rate of Frank-Wolfe

MaxCut using FW-GS:
EICUT,| > agw(1 — 2¢)opt

What about Max-k-Cut? SDP relaxation of Max-k-Cut has n* con-
straints. FW-GS uses O(n?) memory!

Specifications: Used a machine with 8GB RAM and 4 cores

Comparison of Memory Used (in MB)

: : Y = Simple to implement
0 5 | = Offers scope for
> 10 E . .
= o : improvement in
O] . .
2 %3 | computational time
3 3 ° .
S .= Memory used is linear
o A : : ..
S . ! iNn n and significantly
— é o O Agorithm 2 lower than standarad
O sobam | SDP solvers
/A SketchyCGAL (R=10)| |

| | |
0 1000 2000 3000 4000 5000 6000 7000

Number of vertices

Future Directions

= What if the input graph for Max-k-Cut is dense? Sparsification
of the graph to reduce the number of edges

= Are there other problems which can be solved using FW-GS?

References

1] Alan Frieze and Mark Jerrum. Improved approximation algorithms for maxk-cut and max
bisection. Algorithmica, 18(1):67--81, 1997.

2] Michel X Goemans and David P Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM
(JACM), 42(6):1115--1145, 1995.

3] Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient structured
convex optimization via extreme point sampling. arXiv preprint arXiv:2006.10945, 2020.

