
Memory-efficient approximation algorithms for MAX-CUT and MAX-K-CUT
Nimita Shinde 1 Vishnu Narayanan 2 James Saunderson 3

1IITB-Monash Research Academy 2Indian Institute of Technology Bombay 3Monash University

MAXCUT and MAX-K-CUT

MaxCut Partition nodes into two

sets so that the weights of the

edges crossing the partition is

maximized

Max-k-Cut Partition nodes into k
sets so that the weights of the

edges crossing the partition is

maximized

c1

c2
c3

SDP Relaxation:

max 〈cLG, X〉
s.t. diag(X) = 1, X � 0

SDP relaxation:

max 〈ckLG, X〉

s.t. Xij ≥ − 1
k − 1

i 6= j,

diag(X) = 1, X � 0

Decision variable X uses n2 storage!

Too large for large-scale problems

First aim: Provide a low-memory representation

of the decision variable

SDP-based rounding method

Generate a solution

X to the

SDP relaxation

Generate

sample(s) zi's with

covariance X

Round the

sample(s)

Graph CUT

Generation of a cut only requires z ∼ N (0, X)!

If opt is the optimal cut value

Goemans-Williamson (GW) rounding:

E[CUT] ≥ αGWopt [2]
Frieze-Jerrum (FJ) rounding:

E[k-CUT] ≥ αkopt [1]

Second aim: Provide a low-memory implementation of

the GW and FJ rounding that preserves

approximation guarantees

Gaussian Sampling: Away to achieve our first aim

Nonnegative weighted

sum of samples
⇐⇒ Nonnegative weighted

sum of matrices

Let zt ∼ N (0, Xt) and ht ∼ N (0, Ht)
If zt+1 =

√
1 − γt zt + √

γtα ζ ht for ζ ∼ N (0, 1), then

E
[
zt+1z

T
t+1

]
= (1 − γt)Xt + γtHt = Xt+1

Frank-Wolfe with Gausssian Sampling (FW-GS) [3]

Frank-Wolfe update step

Xt+1 = (1 − γ)Xt + γHt

Rank of update direction Ht at most one for the problem

max
X :Tr(X)≤α,X�0

g([〈Bi, X〉]di=1)

Not necessary to compute Xt+1 explicitly

if we use Gaussian sampling!

Gaussian sample z: a low-memory representation of X

Low-memory implementation of GW rounding: Our
second aim (Part 1)

Penalize

the constraints

in the input SDP

Frank-Wolfe

that updates

the sample(s)

Generate

w ∼ N (0, W )
with W feas

to the SDP

Round the

sample(s)

SDP

z ∼ N (0, Xa)

CUTa

Step 1
Step 2

Note: Xa � 0 is O(ε)-feasible solution to

input SDP with d linear constraints

Key features: Uses O(n + d) memory, preserves convergence

rate of Frank-Wolfe

MaxCut using FW-GS:

E[CUTa] ≥ αGW (1 − 2ε)opt

What about Max-k-Cut? SDP relaxation of Max-k-Cut has n2 con-

straints. FW-GS uses O(n2) memory!

Low-memory implementation of FJ rounding: Our
second aim (Part 2)

A new relaxation of Max-k-Cut

max 〈ckLG, X〉

s.t. Xij ≥ − 1
k − 1

(i, j) ∈ E, i < j,

diag(X) = 1, X � 0

Key observation: If the

rounding is applied to the

new relaxation

E[k-CUT] ≥ αkopt

Max-k-Cut using FW-GS:

E[CUTa] ≥ αk(1 − 4ε)opt

Implementing FW-GS for MAXCUTwith ε = 0.1

Specifications: Used a machine with 8GB RAM and 4 cores

0 1000 2000 3000 4000 5000 6000 7000

Number of vertices

10 -1

100

101

102

103

M
em

or
y 

re
qu

ire
d 

in
 M

B

Comparison of Memory Used (in MB)

Algorithm 2
SDPNAL+
SDPT3
SeDuMi
SketchyCGAL (R=10)

Simple to implement

Offers scope for

improvement in

computational time

Memory used is linear

in n and significantly

lower than standard

SDP solvers

Future Directions

What if the input graph for Max-k-Cut is dense? Sparsification

of the graph to reduce the number of edges

Are there other problems which can be solved using FW-GS?

References

[1] Alan Frieze and Mark Jerrum. Improved approximation algorithms for maxk-cut and max

bisection. Algorithmica, 18(1):67--81, 1997.

[2] Michel X Goemans and David PWilliamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM

(JACM), 42(6):1115--1145, 1995.

[3] Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient structured

convex optimization via extreme point sampling. arXiv preprint arXiv:2006.10945, 2020.


