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Introduction

Can we approximate sparse semidefinite programs using fewer variables?
Semidefinite programs are convex optimization problems of the following form:

minimize 〈B0, X〉
such that 〈B1, X〉 = b1

. . .

〈Bk, X〉 = bk
X � 0

X � 0 means that X is positive semidefinite (PSD); all eigenvalues of X are nonnegative.

These programs are often used to approximate polynomial optimization prob-
lems, with applications in control theory, power systems, and combinatorial opti-
mization.[2]

General semidefinite programs are very memory intensive, so it is of interest to
reduce the number of variables involved in the program. We say that the above
semidefinite program is G-sparse for a graph G if each B` has the property that
B`ij = 0 if {i, j} is not an edge of G. For G-sparse programs, the variables cor-
responding to nonedges of G are not used except to define the positive semidef-
initeness condition.
G-sparse programs appear in natural problems. For example, there is a well

known semidefinite program of Goemans-Williamson for approximating the NP-
complete MAX-CUT problem, which is G-sparse for input graphs G.

Our aim is to approximately solve such sparse semidefinite programs while
only keeping track of the variables needed to define these linear constraints and
the linear objective. We do this by considering the cone of PSD-completable
matrices, and a well known relaxation which we call the locally-PSD cone.

Positive Semidefinite Completion

For any graph G, there is a vector space of G-partial matrices, denoted

H(G) = RV (G)∪E(G)

We can project an n × n matrix, X, onto the space of partial matri-
ces, by ‘forgetting’ the entries of X which correspond to nonedges of G.


1 −1 x −1
−1 1 −1 y
x −1 1 −1
−1 y −1 1

→


1 −1 ? −1
−1 1 −1 ?

? −1 1 −1
−1 ? −1 1


This corresponds to the natural projection onto partial matrices for a 4 cycle.

The projection of the PSD cone onto the space of G-partial matrices will be
referred to as the PSD completable cone.

Σ(G) = {X ∈ H(G) : ∃X ′ � 0 : π(X ′) = X}
The positive semidefinite completion problem is to determine whether a G-partial
matrix has a PSD completion. This has been studied extensively, and results are
known for chordal graphs and series parallel graphs. [3, 4] Solving G-sparse
semidefinite program is equivalent to solving conical programs over Σ(G).

Locally-PSD Matrices

Cliques in the graphG correspond to complete submatrices ofG-partial matri-
ces: 

1 −1 1 −1
−1 1 −1 ?

1 −1 1 −1
−1 ? −1 1


A locally-PSD matrix with one fully specified submatrix and its corresponding clique

highlighted. This submatrix is PSD.

Principal submatrices of PSD matrices are PSD, so for a G-partial matrix to
be PSD completable, all of the submatrices corresponding to cliques must be
PSD.

P(G) = {X ∈ H(G) : ∀ cliques C ⊆ V (G), X|C � 0}
The locally-PSD cone is the cone of matrices where for all cliques of G, the

corresponding submatrices are PSD. It is clear that Σ(G) ⊆ P(G).
If the number of cliques of G is small, then checking that a partial matrix is

locally-PSD is easy without introducing auxiliary variables.
Remark: More generally, we might consider G-partial matrices where only

a subset of the cliques correspond to PSD matrices. This leads to the more
general setting of considering simplicial complexes instead of graphs, and will
be explored more in other work.

A Quantitative Measure

Given X ∈ P(G), we define the additive distance of X to be

εG(X) = min {ε : X + εI ∈ Σ(G)}
• This is the smallest ε so that X + εI is PSD completable.
• This is related to the largest minimum eigenvalue of any completion of X.
• It is concave on P(G).
• For fixed X, this can be computed using a semidefinite program.

We then say that the additive distance of the graph G is

ε(G) = min {εG(X) : X ∈ P(G), tr(X) = 1}
We can find lower bounds on this quantity by finding completions for matrices in
P(G) whose minimum eigenvalue is close to 0.

PSD-Completable v.s. Locally-PSD

It is well known that if the graph G is chordal, then X ∈ H(G) is PSD-
completable if and only if it is locally-PSD, so that ε(G) = 0. On the other hand
for all nonchordal graphs, ε(G) > 0.[5] This is related to the fact that there exist
nonnegative polynomials on some varieties which are not sum-of-squares.[6]
It was shown in [7] that if G is series parallel, then X ∈ P(G) is PSD com-
pletable if and only if for all cycles C ⊆ G, X|C is PSD completable. This is
a fact we exploit to reduce the computation of ε(G) for G series parallel to the
case when G is a cycle.

Results

Approximation
This additive distance is useful for bounding the quality of the approximation
resulting from replacing the PSD cone with the locally-PSD cone for general
programs, but the result is easiest to state when the program satisfies some
conditions.
We say that a semidefinite program is of Goemans-Williamson type if it is G-
sparse, the objective has 0 trace, the trace of any feasible point is at most 1,
and if the rescaled identity 1

nI is a feasible point of the program.

Approximation Guarantee: If α is the value of a semidefinite of Goemans-
Williamson type, and α′ is the value of the program obtained by replacing the
PSD cone with the locally-PSD cone, then

α′ ≤ α ≤ 1
1+nε(G)

α′.

Additive Distance Computations

The clique sum of two graphs
G1 and G2 is the result of glu-
ing G1 and G2 along a com-
mon clique, and we denote it by
G1 ⊕G2.

Clique Sume and Additive Distance:

ε(G1 ⊕G2) = max {ε(G1), ε(G2)}

The cone over a graph G is
the graph Ĝ obtained by intro-
ducing a new vertex to G and
adding in all possible edges out
of that new vertex.

Coning and Additive Distance:

ε(Ĝ) = ε(G)

The chordal girth of a graph G, g(G), is the size of the smallest induced cycle
in G of size at least 4. A graph is series-parallel if has no K4 minors.
Series Parallel Graphs: If G is a series-parallel graph, then

ε(G) = 1
g(G)

(
1

cos( π
g(G)

)
− 1

)
= O

(
1

g(G)3

)
We can also consider the ranks of optimal PSD completions:

IfG is any graph, andX ∈ P(G)\Σ(G), thenX+εG(X)I can be completed
to a rank n− g(G) + 2 PSD matrix.

Thickened Graphs
More recent results use ideas from algebraic geometry to characterize the ex-
treme rays of P(G) for graphs which can be written as quotients of chordal
graphs. We give a simplified example of this kind of result here.
A thickened graph is a graph H obtained from a base graph, G (which we
will allow to have multi-edges and loops), and replacing the edges with chordal
graphs with marked starting and terminal vertices.

Thickened Graphs: If H is a thickened graph with a triangle free, simple,
base graph G, then ε(H) ≤ ε(G). (unpublished)

Thickened Cycles: Suppose that G is a chordal graph, and H is a graph
obtained by identifying two vertices in G which are of distance at least 4 apart.
Then ε(H) = ε(Cg), where g is the chordal girth of H, and Cg is a cycle of
length g. (unpublished)

Conclusions

It is possible to solve sparse semidefinite programs as long as the sparsity pat-
tern has certain structural properties. It is often enough for the chordal girth of
the graph to be o(n

1
3) to get a good approximation.
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