Georgia
Tech

Kaizhao Sun ${ }^{1}$ Mou Sun ${ }^{2}$ Dr. Wotao Yin ${ }^{2}$
DAMO
${ }^{1}$ School of ISyE, Georgia Tech ${ }^{2}$ Decision Intelligence Lab, DAMO Academy, Alibaba Group

An Overview

Problem: two-block mixed-integer linear program (MILP)

$p^{*}:=\min \left\{c^{\top} x+g^{\top} z \mid A x+B z=0, x \in X, z \in Z\right\} ;$ X and Z are compact and mixed-integer representable Goal: decomposition algorithms with global optimality guarantees.
$-\epsilon$-solution: $c^{\top} x+g^{\top} z<p^{*}+\epsilon,\|A x+B z\|_{1} \leq \epsilon$. - Two Algorithms:

- a framework based on the augmented Lagrangian method (ALM): - a variant of the alternating direction method of multipliers (ADMM). Features:
- both algorithms converge to globally optimal solutions;
-iteration complexity ypper bounds to ϵ-solutions are derived; when A is slock-angular, subproblems can be updated in
applicable to multi-block settings (with reformulation):

$$
\min \left\{\sum_{i=1}^{p} c_{i}^{\top} x_{i} \mid \sum_{i=1}^{p} A_{i} x_{i} \leq b, x_{i} \in X_{i} \forall i \in[p]\right\} .
$$

Augmented Lagrangian Duality for MILPs

$$
\ell_{1} \text {-Augmented Lagrangian Function: }
$$

$L(x, z, \lambda, \rho):=c^{\top} x+g^{\top} z+\langle\lambda, A x+B z\rangle+\rho\|A x+B z\|_{1}$. Augmented Lagrangian Relaxation:

$$
d(\lambda, \rho):=\min \{L(x, z, \lambda, \rho) \mid x \in X, z \in Z\} .
$$

Augmented Lagrangian Dual Problem:
$\max _{\lambda, \rho} d(\lambda, \rho)=\max _{\lambda, \rho} \min _{x \in X, z \in Z} L(x, z, \lambda, \rho) \leq p^{*} . \quad$ Weak Duality Exact Penalization for MILP (Feizollahi-Ahmed-Sun 17): - given any λ^{*}, there exists a finite $\rho^{*}>0$ such that
$\operatorname{Argmin}\left\{L\left(x, z, \lambda^{*}, \rho^{*}\right) \mid x \in X z \in Z\right\}$
$=\operatorname{Argmin}\left\{c^{\top} x+g^{\top} z \mid A x+B z=0, x \in X, z \in Z\right\} ;$

- consequently

$$
\max _{\lambda, \rho} d(\lambda, \rho)=d\left(\lambda^{*}, \rho^{*}\right)=p^{*} . \quad \text { [Strong Duality] }
$$

Challenges in Algorithm Design

Efficient evaluation of the AL dual function $d(\lambda, \rho)$ is missing existing works assume such an (inexact) oracle is available; block coordinate descent (BCD) does not converge with ℓ_{1} coupling. It is attempting to use ADMM, but:

- ADMM may converge to local sol
ADM converge to be solutions or diverge,

AUSAL for AL Dual Function Evaluation

- Goal: given (λ, ρ) and $\epsilon \geq 0$, find (x, z) such that

$$
L\left(r_{1}, \lambda, \rho\right)
$$

Our Approach: decompose the minimization into two stages:

Lemma: $R(z)$ is piece-wise linear and K-Lipschitz continuous where
$K=\rho\|B\|_{1}$.
Reverse Norm Cut:

$$
r(z ; \bar{z})=R(\bar{z})-K\|z-\bar{z}\|_{1} ;
$$

- lower approximation of $R: r(z ; \bar{z}) \leq R(z) \forall z \in Z$;
- locally tight at $\bar{z}: r(\bar{z} ; \bar{z})=R(\bar{z})$.

- Point-wise Maximum of a Collection of Reverse Norm Cuts:

$$
\max \left\{r\left(z ; z^{i}\right) \mid i=1, \cdots, k\right\}
$$

a better approximation as the number of trial points increases

- Alternating Update Scheme for the Sharp Augmented Lagrangian (AUSAL): decide the next trial point and update LowerBound

$$
\underset{z \in Z}{\operatorname{Argmin}}\left\langle g+B^{\top} \lambda, z\right\rangle+\max \left\{r\left(z ; z^{i}\right) \mid i=1, \cdots, k\right\} ;
$$

evaluate $R\left(z^{k+1}\right)$ and update UpperBound;
-stop if UpperBound - LowerBound $\leq \epsilon$.

- Convergence of AUSAL:

AUSAL subsequentially converges to an optimal solution of the AL relaxation.
Given $\epsilon>0$, AUSAL terminates with an ϵ-optimal solution of the AL
relaxation in $\mathcal{O}\left(\rho^{d} \epsilon^{d}\right)$ iterations, where $Z \subset \mathbb{R}^{d}$.

First Algorithm: ALM Empowered by AUSAL

Penalty Method: a single call of AUSAL with proper (λ, ρ).
If (λ, ρ) supports exact penalization, then AUSAL returns an ϵ-solution of the MLLP in $\mathcal{O}\left(\rho^{d} / \epsilon^{d}\right)$ iterations.
-Fix any λ and choose $\rho=\Theta(1 / \epsilon)+\|\lambda\|_{\infty}$, then AUSAL returns an ϵ-solution of the MLP in $\mathcal{O}\left(1 / \epsilon^{2 d}\right)$ iterations.
ALM: inexact subgradient updates on (λ, ρ).
$-d(\lambda, \rho)$ is concave and upper-semicontinuous.
If $(x, z)=\operatorname{A\cup SAL}(\lambda, \rho, \epsilon)$, then

$$
\left[\begin{array}{c}
A x+B z \\
\|A x+B z\|_{1}
\end{array}\right] \in \partial_{\epsilon}(-d)(\lambda, \rho) .
$$

Inexact subgradient ascent: with proper choices of α_{k},
$\left(x^{k}, z^{k}\right)=\operatorname{AUSAL}\left(\lambda^{k}, \rho^{k}, \epsilon\right) ;$
$\lambda^{k+1}=\lambda^{k}+\alpha_{k}\left(A x^{k}+B z^{k}\right)$)

Second Algorithm: An ADMM Variant

- Motivation for ADMM:
- ALM is double-looped;
- historical reverse norm cuts cannot be reused efficiently. Solve the AL Relaxation in Variable x : Solve the
- define

$$
R(\bar{z}):=\min _{x \in X} c^{\top} x+\rho\|A x+B \bar{z}\|_{1} .
$$

$P(\bar{z}, \bar{\mu}, \bar{\beta}):=\min _{x} c^{\top} x+\langle\bar{\mu}, A x+B \bar{z}\rangle+\bar{\beta}\|A x+B \bar{z}\|_{1}$.
a strong duality in x :

$$
\max _{(\bar{\beta}, \bar{\beta}) \in A(\rho)} P(\bar{z}, \bar{\mu}, \bar{\beta})=R(\bar{z}),
$$

where $\Lambda(\rho):=\left\{(\mu, \beta): \beta \geq 0,\|\mu\|_{\infty}+\beta \leq \rho\right\}$;
Augmented Lagrangian Cuts (ALCuts): $\operatorname{pick}(\bar{\mu}, \bar{\beta}) \in \Lambda(\rho)$, define $r(z ; \bar{z}, \bar{\mu}, \bar{\beta}):=P(\bar{z}, \bar{\mu}, \bar{z})+\langle\bar{\mu}, B z-B \bar{z}\rangle-\bar{\beta}\|B z-B \bar{z}\|$ - lower approximation of $R(z): r(z ; \bar{z}, \bar{\mu}, \bar{\beta}) \leq R(z) \forall z \in Z$; not necessarily tight
llows rotation and a smaller Lipschitz constant (fatter in shape)

Second Algorithm: An ADMM Variant (Cont.)

An ADMM Variant: use AL cuts to approximate the dependency on
$x^{k} \in \operatorname{Argmin}_{x \in X} c^{\top} x+\left\langle\mu^{k}, A x+B z^{k-1}\right\rangle+\beta^{k}\left\|A x+B z^{k-1}\right\|_{1}$;
$z^{x^{k} \in \operatorname{Argmin}_{z \in X} \operatorname{Argman}^{\top} x+g^{\top} z+\max _{j \in[k]}\left\{r\left(z ; z^{j-1}, \mu^{j}, \beta^{j}\right)\right\} ;}$
flexible update on (μ^{k}
Assumptions: Let $\underline{\rho}>0$ be a finite penalty that supports exact penalization. Suppose the sequence $\left\{\left(\mu^{k}, \beta^{k}\right)\right\}_{k \in \mathbb{N}}$ are chosen such that
$\beta^{k}-\left\|\mu^{k}\right\|_{\infty} \geq \underline{\rho}$ for large enough $k \in \mathbb{N}$;
$\beta^{k}+\left\|\mu^{k}\right\|_{\infty} \leq \bar{\rho}$ for all $k \in \mathbb{N}$.
Geometric Intuition. prevents

- Convergence of the ADMM Variant:

The ADMM variant subsequentia
two-block MILP problem.
The ADMM variant finds an ϵ-solution of the two-block MILP in
$\mathcal{O}\left(\left(\bar{\rho}+\rho \rho^{d} / \epsilon^{d}\right)\right.$ iterations, where $Z \subseteq \mathbb{R}^{d}$.

Comparison with Primal/Dual Decomposition

- Multi-block problem:

10 linear constraints couple 100 blocks

- each block has local constraints: $X_{i}=\left\{x \in\{0, \cdots, 60\} \times\left[-60,60| | E_{i} x \leq f_{i}\right\}\right.$

Compare to primal (Camisa et al. 18) and dual (Vuianic et al. 16) Decomp

- ALM and ADMM find optimal solutions and are faster in most cases;
ALM and ADMM find optimal solutions and are faster in most case
may fail to find feasible solution due to subproblem slow-down;
need better strategy to manage nonconvex cuts.

