A Network-based Column Generation Approach for Volumetric Modulated Arc Therapy

Amirhossein Vaeztehrani, Houra Mahmoudzadeh amir.vaeztehrani@uwaterloo.ca, houra.mahmoudzadeh@uwaterloo.ca

Abstract

Background

- Radiation therapy (RT) is used in more than 50% of cancer treatment cases
- **Goal:** irradiating the tumor while protecting adjacent organs

Volumetric Modulated Arc Therapy

- VMAT: a fast RT modality with continuously rotating beam around patient
- Apertures change by a MLC to avoid irradiating critical organs

Purpose

 We model the clinical and deliverability constraints by a large-scale MIP and solve it

Method

 We develop a network-based column-generation algorithm which optimizes the intensity and shape of apertures.

Problem statement

Standard assumption

 We approximate the continuous path by discrete control points (CPs) and solve a DAO problem at each CP

Image from www.rayresearchlab.com

Model

Dose to adjacent organs is minimized (Objective function)

Deliverability constraints

1.Uniformity constraints: Apertures deliver uniform dose

Uniform vs non-uniform non-deliverable aperture

2.Continuity constraints: Apertures are continuous

Continuous vs non-deliverable aperture with island

3.Leaf motion constraints: Within an arc θ , MLC leaves can move no more than Δx

Maximum leaf motion (MLM) constraints

Challenges

Advantages	Challenges
✓ Fast delivery	Practical
✓ Less patient discomfort	Feasible solution (Not optimal
✓ Less dispositioning error	❖ Limited usage
✓ Less waiting time	
✓ More machine availability	Mathematical
✓ Potential for higher quality	Excessively large problem
	❖ MIP constraints

VMAI advantages and challenges

Column generation

Master problem (MP)

- Optimizes the intensity over the available set of apertures
- A linear FMO problem

Pricing problem (PP)

- Optimizes the shape of apertures
- MIP PP is modeled by a network

Modeling the MLC at each CP by a network

- Leaves in MLC can move independently.
- Position of each leaf pairs is dependent to that of the adjacent CP.
- A shortest path problem is solved for each MLC row.

The network for the first row of MLC

Algorithm **0-Initialization** 2- Network Weights 1- Master Problem Start Solve MP with the Use MP's duals to find Start with an initial current set of apertures the weights set of apertures 4- Update Apertures 3- Pricing Problem Add the new apertures to apertures set Solve the PP for each row and construct the apertures for all CPs

Results

A numerical example

- An example with 5 CPs, constant speed and dose rate
- For dose of 200 (Gy) and $\Delta x = 1$
- Optimal solution after 7 iterations

CG iteration for the example

Conclusion and future works

Conclusion

- Our CG converges to optimal solution very fast
- At each iteration the hard Deliverability constraints in PP is modeled and solved by a network efficiently

Future works

- We incorporate uncertainty in our VMAT model using robust optimization
- We will incorporate more complicated row-dependent deliverability constraints and modify our network to solve PP